期刊文献+

基于ARIMA与双层BP神经网络相结合的风电功率预测方法 被引量:7

A Hybrid Wind Power Prediction Approach Based on ARIMA and Double BP Neural Network
下载PDF
导出
摘要 为满足风电运行、维护及调度管理需要,提高风电功率预测精度,提出了一种基于ARIMA与BP神经网络的组合风电功率预测方法。介绍了时间序列法与BP神经网络法的基本原理,采用了新的结合方式,综合考虑了风速、风向、以及风电场当地的物理限制,建立了预测模型。通过对某风电场的实测数据进行分析预测及对比,结果表明,该方法能有效提高风电功率预测精度,具有较好的实际应用价值。 In order to satisfy the wind power operation, maintenance and scheduling management, as well as improve the predictive accuracy, a hybrid wind power prediction method based on ARIMA (autoregressive integrated moving average) and BP (back propagation) neural network is proposed. First, the paper introduces the time-se- ries method and BP neural network. With a novel combination approach, the predictive model is established, which takes adeount of the wind speed, wind direction and the physical limitations of the wind plant. Compared with the real data of a wind plant, the result shows that the proposed method improves the accuracy of wind power prediction effectively, and it also has good practical value.
出处 《电力科学与工程》 2012年第12期50-55,共6页 Electric Power Science and Engineering
关键词 风功率 时间序列 神经网络 预测 wind power time-series neural network prediction
  • 相关文献

参考文献11

  • 1范高锋,裴哲义,辛耀中.风电功率预测的发展现状与展望[J].中国电力,2011,44(6):38-41. 被引量:56
  • 2George Sideratos,Nikos D. Hatziargy riou.An advanced statistical method for wind power forecasting[J].IEEE Transactions on Power Systems,2007,(01):258-265.doi:10.1109/TPWRS.2006.889078.
  • 3Soman S S,Zareipour H,Malik O. A review of wind power and wind speed forecasting methods with different time horizons[A].Arlington,2010.1-8.
  • 4Foley A M,Leahy P G,McKeogh E J. Wind power forecasting and predition methods[A].Prague,2010.61-64.
  • 5Peiyuan Chen,Troels Pedersen,Birgitte Bak-Jensen. ARIMA-based time series model of stochastic wind power generation[J].IEEE Transactions on Power Systems,2010,(02):667-676.
  • 6Mohandes M A,Rehman S,Halawani T. A neural networks approach for wind speed prediction[J].Renewable Energy,1998,(03):345-354.
  • 7Chang P S,Li L. Ocean surface wind speed and direction retrievals from the SSM/I[J].IEEE Transactions on Geoscience and Remote Sensing,1998,(06):1866-1871.doi:10.1109/36.729357.
  • 8牛晨光,游晓科,刘观起,赵振云.组合模型在风电场发电功率短期预测中的应用[J].电力科学与工程,2012,28(3):13-16. 被引量:5
  • 9Feng Jiangxia;Liang Jun;Wang Chengfu.A combination prediction model for wind farm output power[A]山东威海,20111290-1294.
  • 10杨叔子;吴雅;轩建平.时间序列分析的工程应用[M]武汉:华中科技大学出版社,2007.

二级参考文献26

  • 1迟永宁,刘燕华,王伟胜,陈默子,戴慧珠.风电接入对电力系统的影响[J].电网技术,2007,31(3):77-81. 被引量:500
  • 2风电并网运行报告[R].北京:国家电网公司,2009.
  • 3风电功率预测功能规范[S].北京:国家电网公司,2011.
  • 4BOSSANYI E A. Short-term wind prediction using Kalman filters [J ]. Wind Engineering, 1985, 9 ( 1 ): 1-8.
  • 5ACKERMANN T. Wind power in power system [ M ]. Chichester, England John Wiley & Sons Ltd 2005.
  • 6The Word Wind Energy Association. Half-year Report 2011[EB/OL].http://www.wwindea.org,2011.
  • 7中国可再生能源学会风能专业委员会.2010年中国风电装机容量统计.
  • 8牛东晓;曹树华.电力负荷预测技术及其应用[M]北京:中国电力出版社,2006.
  • 9韩敏.混沌时间序列预测理论与方法[M]北京:中国水利水电出版社,2007.
  • 10Abarbanel H D I,Masuda N,Rabinovich M I,Tumer E. Distribution of mutual information[J].Physics Letters A,2001,(5-6):369-373.

共引文献59

同被引文献77

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部