期刊文献+

基于人工神经网络的建筑多目标预测模型 被引量:30

Building multi-objective predicting model based on artificial neural network
下载PDF
导出
摘要 为得出一种能快够速且准确预测建筑能耗和室内热舒适状况的方法,提出应用人工神经网络来预测建筑能耗和室内热舒适状况的方法,并通过遗传优化算法对神经网络的连接权进行优化;其次,对影响建筑能耗和室内热舒适状况的主要因素进行分析,并针对这些主要因素建立基于GA-BP网络的建筑能耗和室内热舒适状况的预测模型;结合EnergyPlus模型计算所得出的144组样本数据,训练和测试所建立的住宅建筑能耗和室内热舒适状况的GA-BP网络模型,测试结果表明该模型有较高的预测精度。该预测方法的建立使建筑师在设计阶段能够简单且准确地获得设计建筑的能耗和室内舒适状况,从而使设计向着有利于建筑节能和改善室内热环境的方向发展。 In order to predict energy consumption and indoor thermal comfort quickly and accurately, a method applying artificial neuron network (ANN) was proposed. Meanwhile, the connect weight of ANN network was optimized using genetic algorithm. Furthermore, the main influence factors effecting the energy consumption and indoor thermal comfort was analyzed, it was put forward in terms of the main factors that the predicting model was based on the GA-BP network to predict energy consumption and indoor thermal comfort. Eventually, the GA-BP network model was trained and tested with 144 samples which was calculated by the EnergyPlus software, and the result proves that the model predicts energy consumption and indoor thermal comfort with high accuracy.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第12期4949-4955,共7页 Journal of Central South University:Science and Technology
基金 国家自然科学基金重点资助项目(50838009)
关键词 建筑能耗 热舒适 多目标预测模型 GA-BP人工神经网络 住宅建筑 building energy consumption thermal comfort multi-objective predicting model genetic algorithm-artificialneural network residential building
  • 相关文献

参考文献18

  • 1Gonzalez P A, Zamarreno J M. Prediction of hourly energy consumption in buildings based on a feedback artificial neural network[J]. Energy and Buildings, 2005, 37(6): 595-601.
  • 2Kelesoglu O, Flrat A. Determination of loss of heat in brick wall and installation with artificial neural network[J]. Sci Eng J Flrat Univ 2006, 18(1): 133-141.
  • 3Montana D J, Davis L. Training feed-forward neutral networks using genetic algorithms[C]//Proceeding of the International Joint Conference on Artificial Intelligence. Los Altos, CA: Morgan Kaufmann Publishers, 1989: 762-767.
  • 4Azadeh A, Ghaderi S F, Tarverdian S, et al. Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption[J]. Applied Mathematics and Computation, 2007, 186(2): 1731-1741.
  • 5汪小旵,丁为民,罗卫红,戴剑锋.南方现代化温室能耗预测模型的建立与分析[J].南京农业大学学报,2006,29(1):116-120. 被引量:11
  • 6Olofson T, Andersson S. Long-term energy demand predictions based on short-term measured data[J]. Energy and Buildings, 2001, 33(2): 85-91.
  • 7重庆市建设技术发展中心.建筑节能设计标准培训辅导教材[M].重庆:重庆市建筑节能协会,2005:127-168.
  • 8Mitchell M. An introduction to genetic algorithms[M]. Cambridge, MA: The MIT Press, 1996: 1-158.
  • 9Karatasou S, Santamouris M, Geros V. Modeling and predicting building's energy use with artificial neural networks: Methods and results[J]. Energy and Buildings, 2006, 38(8): 949-958.
  • 10Kalogirou S A, Bojic M. Artificial neural networks for the prediction of the energy consumption of a passive solar building[J]. Energy, 2000, 25(5): 479-491.

二级参考文献22

  • 1王绍金,崔绍荣,J.Deltour,J.Nijskens.温室温度和热流通量的动态模拟[J].浙江农业大学学报,1993,19(2):159-162. 被引量:5
  • 2张甫仁,杨昭,郁文红.室内环境评价物元模型及可拓评价方法[J].天津大学学报(自然科学与工程技术版),2005,38(4):307-312. 被引量:19
  • 3程晓鑫,周渝慧.基于灰色改进模型的电价预测[J].华北电力大学学报(自然科学版),2006,33(1):47-50. 被引量:11
  • 4刘明贵,杨永波.边坡位移预测组合灰色神经网络方法[J].中国地质灾害与防治学报,2006,17(2):74-78. 被引量:12
  • 5邹志荣,李建明,王乃彪,刘云星,李海岗,李虎林.日光温室温度变化与热量状态分析[J].西北农业学报,1997,6(1):58-60. 被引量:26
  • 6I I Esat, B Kothari, A Shaikh. Encoding neural networks for GA based structural construction [A]. Proceedings of the 6^th International conference on Neural information processing, ppl: 359-365, 1999.
  • 7Xin Yao. Evolving Artificial Neural Networks [J]. Proceedings of The IEEE, 1999, 87(9): 1423-1447.
  • 8Christian Igel, Peter Stagge. Effects of phenotypic redundancy in structure optimization [.I]. IEEE Trans. On evolutionary computation,2002, 6(1): 74-85.
  • 9C M Friedrioh, c Moraga. An evolutionary method to find good building- blocks for architectures of artificial neural networks [A]. in proc. 6^th Int Conf. Information Processing and Management of Uncertainty in Knowledge Based Systems [C]. Granada, Spain, 1996,951-956.
  • 10Aviszar R.Verification study of a numerical greenhouse microclimate model[ J].Trans ASAE,1982,25:1711 -1720

共引文献47

同被引文献265

引证文献30

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部