期刊文献+

基于声发射检测技术的转炉耳轴轴承故障诊断 被引量:2

Fault Diagnosis for Converter Trunnion Bearings Based on Acoustic Emission Testing Technology
下载PDF
导出
摘要 以转炉耳轴轴承为研究对象,将声发射技术应用于转炉耳轴轴承的故障诊断中,提出了应用主成分分析(PCA)和最小二乘支持向量机(LS-SVM)相结合的故障诊断方法。首先,对声发射信号的特征量进行主成分分析,得到更能反映设备状态的综合特征参数,然后将新的特征参数输入到最小二乘支持向量机中进行状态识别。利用在实际生产过程中采集到的转炉耳轴轴承声发射数据进行方法验证。结果表明,新方法能够有效区分出转炉耳轴轴承的故障模式,识别的总体正确率可达97.8%。 Taking converter trunnion bearing as a research object, Acoustic Emission (AE) technology is applied to the fault diagnosis for the converter trunnion bearings by using a new method which employs the combination of Principle Component Analysis (PCA) and Least Squares Support Vector Machines( LS -SVM). Firstly, the AE features are cal- culated, and then features are extracted by PCA to get the comprehensive feature parameters. The results are put into LS - SVM to achieve the pattern recognition. AE signals are acquired from the converter trunnion bearings in production condition. The results show that the proposed method is effective in distinguishing fault modes of the converter trunnion bearings, and the accuracy of recognition is 97.8%.
出处 《轴承》 北大核心 2013年第1期46-50,共5页 Bearing
基金 国家自然科学基金资助项目(50905013 51004013) 高等学校博士学科点专项科研基金项目(20090006120007)
关键词 转炉耳轴轴承 故障诊断 最小二乘支持向量机 主成分分析 声发射 converter trunnion bearing fault diagnosis least squares support vector machine principle component a-nalysis acoustic emission
  • 相关文献

参考文献7

  • 1严爱军,李友荣.转炉倾动机构测试及其故障诊断[J].冶金设备,2007(5):59-61. 被引量:5
  • 2曹进华,郑海起,武威,张明.超低速重载、旋转不完全轴承故障诊断[J].军械工程学院学报,2007,19(5):46-49. 被引量:3
  • 3曹进华,郑海起,栾军英.多套超低速重载轴承同轴安装的故障诊断[J].轴承,2008(9):31-35. 被引量:1
  • 4Roverts T M. Acoustic Emission Monitoring of Fatigue Crack Propagation[J].Journal of Constructional Steel Research,2010,(06):695-712.
  • 5Abdullah M,Mba D. A Comparative Experimental Study on the Use of Acoustic Emission and Bibration Analysis for Bearing Defect Identification and Estimation of Defect Size[J].Mechancial Systems and Signal Processing,2006,(07):1537-1571.
  • 6Mba D,Rao Raj B K N. Development of Acousitc Emission Technology for Condition Monitoring and Diagnosis of Rotating Machines,Bearings,Pumps,Gearboxes,Engines and Rotating Structures[J].Shock and Vibration Digest,2006,(01):3-16.doi:10.1177/0583102405059054.
  • 7Suykens J A K. Least Squares Support Vector Machines for Classification and Nonlinear Modelling[J].Neural Network World,2000,(01):29-47.

二级参考文献10

共引文献6

同被引文献28

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部