期刊文献+

跨临界有机朗肯循环性能分析 被引量:9

Performance analysis of transcritical organic rankine cycle
原文传递
导出
摘要 选取24种有机工质对利用低品位余热的有机朗肯循环系统性能进行理论分析,研究发现:当膨胀机入口工质为饱和状态时,最大净功出现在T1/TC≈0.98~0.99处,且临界温度高的工质作功能力明显优于临界温度低的工质。对于超临界ORC循环,只要P1不太低,提高T1有利于增大净功、热效率及效率。超临界ORC的作功能力并非总是优于饱和或过热ORC。所有工质状态从亚临界饱和转变为超临界状态时,净功、热效率、效率及质量流量的变化都是不连续的。 The performance analysis of a transcritical organic Rankine cycle system driven by exhaust heat is presented by using 24 organic working fluids.Four parameters,such as the net power output,thermal efficiency,exergy efficiency,and mass flow rate of working fluid,are used to evaluate the performance of this recovery cycle.The results reveal that the maximum net power can be obtained for the saturated ORC,when T1/TC is about 0.98~0.99,and the working fluid with higher critical temperature has more net power output.For the supercritical ORC,the higher expander inlet temperature will benefit the net power output,thermal efficiency,and exergy efficiency,as long as the expander inlet pressure isnnot too low.However,the influences of expander inlet pressure on these performance parameters are linked with the expander inlet temperature and working fluids.The capability of doing power output of supercritical ORC is not always better than that of subcritical ORC.Parameters,such as net power,thermal efficiency,and exergy efficiency,and mass flow rate are discontinuous in the process from subcritical conditions to supercritical conditions.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第12期57-61,67,共6页 Journal of Chongqing University
基金 国家重点基础研究发展计划资助项目(2011CB710701)
关键词 废热 有机朗肯循环 热效率 净功 质量流量 waste heat organic Rankine cycle thermal cycle net power mass flow rate
  • 相关文献

参考文献17

  • 1DiPippo R. Second law assessment of binary plants generating power from low-temperature geothermal fluids[J]. Geothermics, 2004, 33(5): 565-586.
  • 2Badr O, O ' Callaghan P W, Probert S D. Thermodynamic and thermophysical properties of organic working fluids for Rankine-cycle engines [J]. Applied Energy, 1985,19(1) :1-40.
  • 3Yamamoto T, Furuhata T, Arai N, et al. Design and testing of the Organic Rankine Cycle [J]. Energy, 2001,26(3) :239-251.
  • 4Hettiaraehchi H D M, Golubovic M, Worek W M, et al. Optimum design criteria for an Organic Ranking Cycle using low-temperature geothermal heat sources[J]. Energy, 2007,32(9) :1698-1706.
  • 5Mago P J, Chamra L M, Srinivasan K, et al. An examination of regenerative Organic Rankine Cycles using dry fluids [J]. Applied Thermal Engineering, 2008,28(8/9) : 998-1007.
  • 6Wei D H, Lu X S, Lu Z, et al. Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery [ J ]. Applied Thermal Engineering, 2008, 28(10) : 1216-1224.
  • 7Wei D H, Lu X S, Lu Z, et al. Performance analysis and optimization of Organic Rankine Cycle (ORC) for waste heat recovery [J]. Energy Conversion and Management, 2007, 48(4): 1113-1119.
  • 8Saleh B, Koglbauer G, Wendland M, et al. Working fluids for low-temperature Organic Rankine Cycles[J]. Energy, 2007, 32(7): 1210-1221.
  • 9Chen Y, Lundqvist P, Johansson A, et al. A comparative study of the carbon dioxide transcritieal power cycle compared with an Organic Rankine Cycle with R123 as working fluid in waste heat recovery[J]. Applied Thermal Engineering, 2006, 26 ( 17/18): 2142-2147.
  • 10Zhang X R, Yamaguchi H, Uneno D. Experimental study on the performance of solar Rankine system using supercritical CO2 [ J ]. Renewable Energy, 2007, 32(15) :2617-2628.

同被引文献82

  • 1Wei Donghong, Lu Xuesheng, Lu Zhen, Gu Jianming. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery [J]. Energy Conversion and Management, 2007,48(4):1113-1119.
  • 2Tchanche Bertrand F, Lambrinos Gr, Frangoudakis A, Papadakis G. Low-grade heat conversion into power using organic Rankine cycles-a review of various applications [J]. Renewable and Sustainable Energy Reviews, 2011,15(8):3963-3979.
  • 3Saleh Bahaa, KogIbauer Gerald, Wendland Martin, Fischer Johann. Working fluids for low-temperature organic Rankine cycles [J]. Energy, 2007, 32(7):1210-1221.
  • 4Dai Yiping, Wang Jiangfeng, Gao Lin. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery [J]. Energy Conversion and Management, 2009, 50(3):576-582.
  • 5Aljundi Isam H. Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle [J]. Renewable Energy, 2011,36(4):1196-1202.
  • 6Chen Huijuan, Goswami D Yogi, Stefanakos Elias K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat [J]. Renewable and Sustainable Energy Reviews, 2010, 14(9):3059-3067.
  • 7Baik Young-Jin, Kim Minsung, Chang Ki-Chang, Lee Young-Soo, Yoon Hyung-Kee. A comparative study of power optimization in low-temperature geothermal heat source driven R125 transcritical cycle and HFC organic Rankine cycles [J]. Renewable Energy, 2013, 54:78-84.
  • 8Chen Huijuan, Goswami D Yogi, Rahman Muhammad M, Stefanakos Elias K. A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power [J]. Energy, 2011,36(1):549-555.
  • 9Schuster A, Karellas S, Aumann R. Efficiency optimization potential in supercritical organic Rankine cycles [J]. Energy, 2010,35(2):1033-1039.
  • 10Velez Fredy, Jose Segovia, Chejne Farid, Antolin Gregorio, Quijano Ana, Martin M Camen. Low temperature heat source for power generation: exhaustive analysis of a carbon dioxide transcritical power cycle [J]. Energy, 2011,36(9):5497-5507.

引证文献9

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部