期刊文献+

云杂波背景下红外弱小目标的改进检测算法 被引量:1

Improved Infrared Dim Target Detection Algorithm for Cloud Clutter
下载PDF
导出
摘要 根据目标和背景的时域特性,建立了不同像素类型的时域模型。提出了一种基于时域廓线的云杂波背景下红外弱小目标的一种改进算法。首先,采用基于时域方差滤波预处理方法,滤除平稳背景;然后采用基于时域廓线的目标检测方法,根据时域剖面线上的拐点值变化,转化为大小相当的正负脉冲来检测目标。理论分析和实验结果表明,文中算法对于不同云杂波背景具有广泛的适应性。 The temporal models for different pixel type are given according to temporal characteristics of the tar- get and background. An improved algorithm for temporal profile detection of infrared dim and small targets on back- ground clutters is presented. Firstly, the background suppression procession algorithm based on temporal variance is adopted to filter stable background from the image. Secondly, the detection is transformed into the detection the pos- itive and negative pulse whose value is approximated to acquire the moving trace of targets. The theoretical analysis and the experimental result prove that this algorithm has a good performance for various background clutters.
出处 《电子科技》 2013年第1期1-3,26,共4页 Electronic Science and Technology
基金 国防预研基金资助项目(9140A01060110DZ0125)
关键词 红外弱小目标 时域廓线 目标检测 时域方差 infrared dim and small targets temporal profile target detection temporal variance
  • 相关文献

参考文献6

二级参考文献36

  • 1张兵,卢焕章.云杂波背景图像序列中小目标检测算法研究[J].红外技术,2004,26(6):66-71. 被引量:5
  • 2Kemper P J, Dimarco J S. Imaging infrared seeker processing overview: image processing, adaptive thresholding, and track processing [ A ]. In: Proceedings of the SPIE Conference on Infrared Imaging Systems: Design, Analysis, Modeling, and Testing [ C ],Orlando, Florida, USA, 1999, 3701:266 ~ 273.
  • 3陈华明.[D].长沙:国防科技大学,2003.
  • 4Silverman J, Caefer C E, DiSalvo S, et al. Temporal filtering for point target detection in staring IR imagery: Ⅱ. recursive variance filter [ A ]. In: Proceeding of the SPIE Conference on Signal and Data Processing of Small Targets[C], Orlando, Florida, USA, 1998,3373: 44 ~ 53.
  • 5Reed I, Gagliardi R, Stotts L. Optical moving target detection with 3D matched filtering [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 327 ~ 335.
  • 6Reed I, Gagliardi R, Stotts L. A recursive moving-target-indication algorithm for optical image sequences [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26 (3): 434 ~ 439.
  • 7Blostein S D, Huang T S. Detecting small moving objects in image sequences using sequential hypothesis testing [J]. IEEE Transactions on Signal Processing, 1991, 39(7): 1611 ~ 1629.
  • 8Mooney J M, Silverman J, Caefer C E. Point target detection in consecutive frame staring infrared imagery with evolving cloud clutter [J]. Optical Engineering, 1995, 34(9): 2772 ~2784.
  • 9Silverman J, Mooney J M, Caefer C E. Temporal filters for tracking weak slow point targets in evolving cloud clutter [ J]. Infrared Physics and Technology, 1996, 37(6): 695 ~710.
  • 10Caefer C E, Silverman J, Mooney J M, et al. Temporal filtering for point target detection in staring IR imagery: I. damped sinusoid filters [ A]. In: Proceedings of the SPIE Conference on Signal and Data Processing of Small Targets[C], Orlando, Florida, USA, 1998,3373:111 ~ 122.

共引文献27

同被引文献286

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部