期刊文献+

双支腿流化床压力脉动的递归分析 被引量:3

Analysis of Pressure Fluctuations in a Dual-leg Fluidized Bed Based on Recurrence Plot
原文传递
导出
摘要 采用递归图系统研究了流化风速、床存量对双支腿流化床(DL-FB)内气固流动混沌特性的影响规律。DL-FB的宽、深和高分别为0.24、0.04和2.0 m,支腿高为0.16 m,使用粒径范围为0.25~0.28的玻璃珠作为床料。结果表明递归图可用于描述DL-FB内的气固两相流动的混沌特性,且DL-FB内的气固流动较单布风板流化床复杂。DL-FB系统熵随着流化气速的增加呈"M"型曲线变化。DL-FB系统随气速的增加会出现低速颗粒未交换段、低速颗粒交换起始段、颗粒交换段和颗粒悬浮段。床存量对系统熵的影响较大且没有明显规律。DL-FB内的压力脉动包含气泡行为和颗粒交换在半床间交换行为。 Recurrence plot (RP) was used to study the effects of fluidization velocity and bed material inventory on chaotic characteristics in a dual-leg fluidized bed (DL-FB) with dimensions of 0.24 m width, 0.04m depth and 2.0 mm height. The height of dual-leg is 0.16 m. The glass beads with diameters of 0.25-0.28mm were adopted as bed material. The results show that the RP could be utilized effectively to explain the nonlinear dynamic performance in the DL-FB and the chaos of the DL-FB is higher than that of the single distributor FB because of the combination of bubbling actions and solids exchange behavior between two half beds. With the increase of fluidization velocity, entropy as a recurrence quantification parameter varies along with a M-type curve at different fluidization velocities. Four processes were shown for the gas-solids flow in the DL-FB with the increase of the fluidization velocity: lower fluidization velocity with no particles exchange, less solids exchange at lower fluidization velocity, solids exchange and particles dispersion. The trend of the effect of bed inventory on entropy is not obvious.
出处 《中国电机工程学报》 EI CSCD 北大核心 2013年第2期52-57,11,共6页 Proceedings of the CSEE
基金 国家科技支撑计划项目(2012BAA02B00)~~
关键词 双支腿 流化床 颗粒交换 递归图 定量递归 分析 dual-leg fluidized bed solids exchange recurrence plot recurrence quantification analysis
  • 相关文献

参考文献16

二级参考文献69

共引文献46

同被引文献34

  • 1周云龙,何强勇.基于混沌理论与Elman神经网络的气固流化床流型识别[J].化工自动化及仪表,2009,36(5):50-55. 被引量:5
  • 2金宁德,郑桂波,陈万鹏.气液两相流电导波动信号的混沌递归特性分析[J].化工学报,2007,58(5):1172-1179. 被引量:23
  • 3ZHOU Y L,WANG F.Envelope spectrum analysis of pressure fluctuation based on wavelet decomposition[J].Applied Mechanics and Materials,2014,448:3392-3396.
  • 4ECKMANN J P,KAMPHORST S O,RUELLE D.Recurrence plots of dynamical systems[J].EPL(Europhysics Letters),1987,4(9):973.
  • 5ECKMANN J P,RUELLE D.Ergodic theory of chaos and strange attractors[J].Reviews of modern physics,1985,57(3):617.
  • 6PACKARD N H,CRUTCHFIELD J P,FARMER J D,et al.Geometry from a time series[J].Physical Review Letters,1980,45(9):712.
  • 7TAKENS F.Detecting strange attractors in turbulence[M]//Dynamical systems and turbulence,Warwick1980.Annapolis Junction,USA:Springer Berlin Heidelberg,1981:366-381.
  • 8KENNEL M B,BROWN R,ABARBANEL H D I.Determining embedding dimension for phase-space recons-truction using a geometrical construction[J].Physical Review A,1992,45(6):3403.
  • 9WEBBER C L,ZBILUT J P.Dynamical assessment of physiological systems and states using recurrence plot strategies[J].Journal of Applied Physiology,1994,76(2):965-973.
  • 10ZBILUT J P,WEBBER JR C L.Embeddings and delays as derived from quantification of recurrence plots[J].Physics Letters A,1992,171(3):199-203.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部