期刊文献+

层流脉动流中平行圆柱体对流换热的实验研究 被引量:5

Experimental Study on Convection Heat Transfer of a Cylinder Parallel to the Direction of Laminar Pulsating Flows
原文传递
导出
摘要 为研究脉动流中圆柱体的对流换热特性,搭建了脉动流强化传热实验台架,研究不同雷诺数(Re=563 1689)、脉动频率(f=15 59 Hz)和压力振幅(prms=25~150 Pa)的脉动流中平行圆柱体的对流换热问题,获得了相对努塞尔数的经验公式Nur(f,prms,Re)。结果揭示了低频脉动流能显著增大平行圆柱体的对流换热系数,最大相对努塞尔数可达4.5以上。此外,固定雷诺数和脉动频率时,圆柱体表面平均温度随压力振幅的增大而非线性下降,但相对努塞尔数随压力振幅的增大而线性增加;固定压力振幅和脉动频率时,相对努塞尔数随雷诺数的增大而降低。 In order to convection heat transfer of a study the characteristics of cylinder in laminar pulsating flows, an experimental setup was built. Convection heat transfer of a cylinder parallel to the direction of pulsating flows was investigated under different Reynolds numbers (Re=563-1689), pulsating frequencies (f=-15-59 Hz) and pressure amplitudes (Prms=25-150 Pa). An empirical formula of relative Nusselt number, i.e. Nut(f,, P^ms, Re) was obtained. Results reveal that the convection heat transfer coefficient increases obviously in pulsating flows with low pulsating frequency and high pressure amplitude. The largest relative Nusselt number can reach 4.5. In addition, the averaged surface temperature of the cylinder decreases nonlinearly with pressure amplitude in the conditions with same Reynolds number and pulsating frequency, whereas the relative Nusselt number increases linearly with pressure amplitude in the same conditions. Besides, the relative Nusselt number decreases with Reynolds number in the conditions with same pressure amplitude and pulsating frequency.
出处 《中国电机工程学报》 EI CSCD 北大核心 2013年第2期86-91,16,共6页 Proceedings of the CSEE
基金 国家自然科学基金项目(51106140) 浙江省自然科学基金项目(Z1110695)~~
关键词 对流传热 脉动流 圆柱体 强化传热 convection heat transfer pulsating flow cylinder heat transfer enhancement
  • 相关文献

参考文献9

二级参考文献89

共引文献110

同被引文献46

  • 1俞接成,李志信.平板通道振荡流动强化轴向导热的数值研究[J].工程热物理学报,2005,26(1):131-133. 被引量:9
  • 2何雅玲,杨卫卫,赵春凤,陶文铨.脉动流动强化换热的数值研究[J].工程热物理学报,2005,26(3):495-497. 被引量:36
  • 3谢公南,王秋旺,曾敏,罗来勤.渐扩渐缩波纹通道内脉动流的传热强化[J].高校化学工程学报,2006,20(1):31-35. 被引量:28
  • 4HABIB M A, ATTYA A M, EID A I, et al. Con- vective heat transfer characteristics of laminar pul- sating pipe air flow [-J]. Heat and Mass Transfer, 2002, 38(3) :221-232.
  • 5DEC J E, KELLER J O, APPACI V S. Heattransfer enhancement in the oscillating tubulent flow of a pulse combustor tail pipe [J]. International Journal of Heat and Mass Transfer, 1992, 35(9) :2311-2325.
  • 6KEARNEY S P, JACOBI A M, LUCHT R P. Time-resolved thermal boundary layer structure in a pulsatile reversing channel flow [J]. Journal of Heat Transfer, 2001, 123(4) :655-664.
  • 7MOON J W, KIM S Y, CHO H H. Frequency- dependent heat transfer enhancement from rectangu- lar heated block array EJ]. International Journal of Heat and Mass Transfer, 2005, 48 (23/24): 4904-4913.
  • 8THYAGESWARAN S. Numerical modeling of pulse combustor tail pipe heat transfer [J]. Inter- national Journal of Heat and Mass Transfer, 2004, 47(12/13) :2637-2651.
  • 9WANG X, ZHANG N. Numerical analysis of heat transfer in pulsating turbulent flow in a pipe [J]. International Journal of Heat and Mass Transfer, 2005, 48(19/20) : 3957-3970.
  • 10AKDAG U. Numerical investigation of pulsating flow around a discrete heater in a channd [J]. International Communications in Heat and Mass Transfer, 2010, 37(7) :881-889.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部