摘要
为了实现微小卫星高精度稳定并满足微小卫星"快、好、省"的原则,针对微小飞轮动态响应慢,经典控制方法系统输出力矩动态性能、稳态精度达不到要求的问题,推导了基于永磁无刷直流电机的微小飞轮动力学模型。通过建立基于单神经元PID的力矩模式控制系统,对该算法进行分析,设计实现了以现场可编程门阵列为控制核心的数字控制方案。采用该方案在微小飞轮工程样机上进行PID与单神经元PID算法的对比实验,结果表明:单神经元PID算法简单易于实现,超调量小,提高了力矩输出精度;该方案实现简单,重量轻,功耗低,集成度高,精度高,满足微小卫星的技术特点。
In the light of characteristics and requirements of micro flywheel,classical control algorithms can't meet the requirements for dynamic performance and steady-state accuracy of torque output.In order to achieve high-accuracy stabilization for micro satellite and satisfy the principia of "quickness,goodness,retrenchment",the dynamics model for the micro flywheel is deduced based on the permanent magnet brushless DC motor.The torque-mode control system for micro flywheel is established by using a single neuron PID(SNPID) algorithm and the algorithm is analyzed in detail.A digital control scheme is constructed and implemented by using Field Programmable Gate Array(FPGA) as control core.The comparative experiments are carried out and analyzed by using PID and SNPID algorithms for the micro flywheel prototype respectively.The experimental results indicate that the proposed SNPID algorithm is simple and easy to be realized with little over-shoot,quick response and excellent performance.And the output torque accuracy is improved obviously.The control scheme achieves easy realization,light weight,low power consumption,high integration,high-accuracy and technical characteristics for the micro satellite.
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2013年第1期54-60,共7页
Journal of Astronautics
基金
国家自然科学基金(61174003)