期刊文献+

基于单神经元PID算法的微小飞轮高精度控制 被引量:3

High-Accuracy Control for Micro Flywheel Based on Single Neuron PID Algorithm
下载PDF
导出
摘要 为了实现微小卫星高精度稳定并满足微小卫星"快、好、省"的原则,针对微小飞轮动态响应慢,经典控制方法系统输出力矩动态性能、稳态精度达不到要求的问题,推导了基于永磁无刷直流电机的微小飞轮动力学模型。通过建立基于单神经元PID的力矩模式控制系统,对该算法进行分析,设计实现了以现场可编程门阵列为控制核心的数字控制方案。采用该方案在微小飞轮工程样机上进行PID与单神经元PID算法的对比实验,结果表明:单神经元PID算法简单易于实现,超调量小,提高了力矩输出精度;该方案实现简单,重量轻,功耗低,集成度高,精度高,满足微小卫星的技术特点。 In the light of characteristics and requirements of micro flywheel,classical control algorithms can't meet the requirements for dynamic performance and steady-state accuracy of torque output.In order to achieve high-accuracy stabilization for micro satellite and satisfy the principia of "quickness,goodness,retrenchment",the dynamics model for the micro flywheel is deduced based on the permanent magnet brushless DC motor.The torque-mode control system for micro flywheel is established by using a single neuron PID(SNPID) algorithm and the algorithm is analyzed in detail.A digital control scheme is constructed and implemented by using Field Programmable Gate Array(FPGA) as control core.The comparative experiments are carried out and analyzed by using PID and SNPID algorithms for the micro flywheel prototype respectively.The experimental results indicate that the proposed SNPID algorithm is simple and easy to be realized with little over-shoot,quick response and excellent performance.And the output torque accuracy is improved obviously.The control scheme achieves easy realization,light weight,low power consumption,high integration,high-accuracy and technical characteristics for the micro satellite.
出处 《宇航学报》 EI CAS CSCD 北大核心 2013年第1期54-60,共7页 Journal of Astronautics
基金 国家自然科学基金(61174003)
关键词 微小飞轮 微小卫星 永磁无刷直流电机 单神经元PID 现场可编程门阵列 Micro flywheel Micro satellite Permanent magnet brushless DC motor Single neuron PID Field programmable gate array
  • 相关文献

参考文献14

二级参考文献40

  • 1夏长亮,郭培健,史婷娜,王明超.基于模糊遗传算法的无刷直流电机自适应控制[J].中国电机工程学报,2005,25(11):129-133. 被引量:69
  • 2夏长亮,李志强,王明超,刘均华.基于RBF神经网络在线辨识的永磁无刷直流电机单神经元PID模型参考自适应控制[J].电工技术学报,2005,20(11):65-69. 被引量:40
  • 3王永冀 涂健.神经元网络控制[M].北京:机械工业出版社,1999..
  • 4Chen Zhiqian, Mutuwo Tomita, Shinji Doki et al. New adaptive sliding observer for position and velocity-sensorless controls of brushless DC motor[J]. IEEE Trans on Industrial Electronics, 2000, 47(3): 582-591.
  • 5Ahmed R, Kotaru,Raj. Neural net-based robust controller design for brushless de motor drives[J]. IEEE Transaction on Systems, 1999,29(3): 460-474.
  • 6Wilis N J. Artificial neural networks in process estimation and control[J].Autom-atica, 1992, 28(5): 1181-1187.
  • 7Ken Dutton, Christopher N G. Self-tuning control of a cold mill automatic gauge control system[J]. INT J Control, 1996 65(4): 573-588.
  • 8Cruze S M A, Cardoso A J M. Rotor cage fault diagnosis in three-phase induction motors by extended parks vector approach[J].Electric Machines and Power Systems, 2000, 28(5): 289-299.
  • 9Farmer J D,Packard N H,Perelson A S.The immune system,adaptation,and machine learning[J].Physica D,1986,22:187-204.
  • 10Takahashi K,Yamada T.Application of an immune feedback mechanism to control systems[J].JSME Int J,Series C,1998,41(2):184-191.

共引文献343

同被引文献32

  • 1朱鲁青,张召才.2013年国外微小卫星回顾[J].国际太空,2014(2):38-43. 被引量:12
  • 2夏长亮,祁温雅,杨荣,史婷娜.基于RBF神经网络的超声波电机参数辨识与模型参考自适应控制[J].中国电机工程学报,2004,24(7):117-121. 被引量:13
  • 3纪志成,沈艳霞,薛花.无刷直流电机自适应模糊控制的研究[J].中国电机工程学报,2005,25(5):104-109. 被引量:55
  • 4刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,1988.
  • 5ISMAIL Z, VARATHARAJOO R. A study of reaction wheel congurations for a 3-axis satellite attitude control [J]. Advances in Space Research, 2010, 45(6):750-759.
  • 6SHANKAR N S, NAIR P S, GHOSAL A. Dynamic interaction of rotating momentum wheels with spacecraft elements [J]. Journal of Sound and Vibration, 2008, 315:970-984.
  • 7AGRAWAL S K, PATHAK K, FRANCH J, et al.. A differentially flat open-chain space robot with arbitrarily oriented joint axes and two momentum wheels at the base [J]. IEEE Transactions on Automatic Control, 2009, 54(9):2185-2191.
  • 8GOKBULUT M, DANDIL B, BAL C. A hybrid neuro-fuzzy controller for brushless DC motor [J].Lecture Notes in Computer Science, 2006, 3949:125-132.
  • 9GENCER C, SAYGIN A, COSKUN I. DSP based fuzzy-neural speed tracking control of brushless DC motor [J]. Lecture Notes in Computer Science, 2006, 39(49):107-116.
  • 10RUBAAI A., RICKETTS D., KANKAM M.D. Development and implementation of an adaptive fuzzy-neural-network controller for brushless drives [J]. IEEE Transactions on Industry Applications, 2002, 38(2):441-447.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部