摘要
当遭遇突发的公共社会安全事件时,具有负面影响的应激行为可能迅速在社会范围内传播扩散,形成群体行为.虽然一些复杂网络的传染模型能够对此进行刻画,但更为符合实际的是行为群体根据一些特性可能划分为不同的亚群体,为此将建立异质节点SIS复杂网络模型.此后,依据亚群体的有效传播率与度分布无关、正相关和负相关三种情形,分别研究了群体行为在异质节点的小世界网络传播特性,及异质节点的无标度网络传播特性.无论是异质节点的小世界网络模型还是异质节点的无标度网络模型,平均场动力学分析和计算机模拟结果显示,当亚群体的传播率与度分布呈正相关时,群体行为的传播会出现放大相应;反之,当亚群体的传播率与度分布成负相关时,群体行为的传播会出现抑制效应.但以上的两种效应在离散性更强的无标度网络上更为明显.
When people encounter unexpected public crisis, the negative impact of stress may rapidly spread the scope of society and result public panic. Though complex network transmission model can describe this process, more in line with the actual, the herd group can be divided into different sub-groups based on some characteristics. For this reason, this article set up susceptible-infected- susceptible (SIS) .models on complex networks of heterogeneous nodes. Respectively based on the three possible cases of sub-group's effective spread rate is unrelated, positively related and negatively related to the nodes' degree distribution, this paper make a comparative study on the transmission characteristics respectively on scale-free network of heterogeneous nodes and on Small word network of heterogeneous nodes. Mean- field analysis and computer simulations results all show that, comparing to the unrelated situation, the spread of panic will appear amplification effect when sub-group's effective spread rate is positively related to the nodes' degree distribution and will appear inhibitory effect in the negative related situation on the both complicated network models, while the both effects being significant on the scale-free network of heterogeneous nodes for its bigger node degree's distribution variance.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第1期97-107,共11页
Mathematics in Practice and Theory
基金
国家自然科学基金(70671066)
博士点基金(20070248054)