期刊文献+

中值流辅助在线多示例目标跟踪 被引量:6

Median flow aided online multi-instance learning visual tracking
原文传递
导出
摘要 针对机器人演示学习中目标跟踪性能的严格要求,提出一种可以有效克服快速运动、遮挡和目标漂移的物体跟踪方法。首先计算中值流,并预测目标的位置偏移,以此计算高斯权重;然后修正搜索区域,并使用在线多示例分类器进行目标搜索,计算似然度;最后使用贝叶斯框架对结果进行融合,使用穷举搜索得到最优的预测位置,并更新在线分类器。实验结果表明,与现有方法相比,该方法对快速运动和目标漂移具有更强的鲁棒性,而且可以达到实时跟踪。 To satisfy the stringent requirements of the object tracking performance in the robot' s learning-from-demonstra- tion-framework, a new tracking algorithm that can deal with fast motions, occlusions, and drifts, is proposed. First, the Median-Flow method is used to predict the position-shift of the object and the Gaussian weight of each patch. Then, the search-region is modified and the object is located by the online multi-instance learning classifier. Afterwards, the likeli-hood of each patch is calculated. Finally, the results are combined under the Bayes framework to get the best prediction by exhaustive search and the online classifier is updated. Experiments in several commonly used test videos show that our method outperforms the other state-of-the-art tracking methods, especially for fast motion and drifts. Furthermore, the pro- posed method can run in real-time.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第1期93-100,共8页 Journal of Image and Graphics
基金 国家重点基础研究发展计划(973)基金项目(2010CB327900)
关键词 服务机器人 演示学习 目标跟踪 在线多示例学习 中值流 service robots learning from demonstration object tracking online multi-instance learning median flow
  • 相关文献

参考文献14

  • 1Argall B D, Chemova S, Veloso M, et al. A survey of robot learning from demonstration [J]. Robotics and Autonomous Sys- tems, 2009, 57(5): 469-483.
  • 2Zhang R, Wang S F, Chen X P, et al. Towards robot incremental learning constraints from comparative demonstration ( demon- stration) [ C] // Proceedings of the 10th International Confe- rence on Autonomous Agents and Multi-agent Systems. Taipei, Taiwan,China:ACM,2011 : 1301-1302.
  • 3侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 4Avidan S. Ensemble tracking [ J]. IEEE Trans. on PAMI, 2007,29 ( 2 ) : 261-271.
  • 5Collins R, Liu Y, Leordeanu M. Online selection of discrimina- tive tracking features [ J ] . IEEE Trans. on PAMI, 2005, 27(10) : 1631-1643.
  • 6Grabner H, Bischof H. On-line boosting and vision [ C ]//Pro- ceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, USA :IEEE, 2006 : 260-267.
  • 7Oza N C. Online ensemble learning [ D ]. California : University of California, 2001.
  • 8Babenko B, Ming-Hsuan Y, Belongie S. Visual tracking with on- line multiple instance learning[ C] //Proceedings of IEEE Con- ference on Computer Vision and Pattern Recognition. Miami, USA : IEEE, 2009 : 983- 990.
  • 9Babenko B, Ming-Hsuan Y,Serge B. Robust object tracking with online multiple instance learning [ J ]. IEEE Trans. on PAMI,2011, 33(8):1619-1632.
  • 10Kalal Z, Mikolajczyk K, Matas J, et al. Forward-backwaM error : automatic detection of tracking failures [ C ]// Proceedings of the 20th International Conference on Pattern Recognition. ls- tanbul, Turkey : IEEE, 2010:2756-2759.

二级参考文献6

共引文献254

同被引文献58

  • 1康国华,张琪,张晗,徐伟证,张文豪.基于点云中心的激光雷达与相机联合标定方法研究[J].仪器仪表学报,2019,40(12):118-126. 被引量:28
  • 2张祖勋,杨生春,张剑清,柯涛.多基线-数字近景摄影测量[J].地理空间信息,2007,5(1):1-4. 被引量:82
  • 3候俊杰.深入浅出MFC[M].第2版.武汉:华中科技大学出版社,2001.
  • 4Kalal Z, Matas J, Mikolajczyk K. PN learning: Bootstrapping binary classifiers by structural constraints[C]// Proc. of 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2010:49-56.
  • 5Kalal Z, Matas J, Mikolajczyk K. Online learning of robust object detectors during unstable traeking[C]// Proc. of 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2009:1417-1424.
  • 6章毓晋.图像处理[M].第3版.北京:清华大学出版社,2012.
  • 7Yilmaz A, Javed O, Shah M. Object tracking: a survey [J].ACM Computing Surveys, 2006, 38(4): Article No.13.
  • 8Zhang K, Song H. Real-time visual tracking via onlineweighted multiple instance learning [J]. Pattern Recognition,2012, 46(1): 397-411.
  • 9Ross D A, Lim J, Lin R S, et al. Incremental learning forrobust visual tracking [J]. International Journal of ComputerVision, 2008, 77(1-3): 125-141.
  • 10Zhong W, Lu H C, Yang M H. Robust object tracking viasparsity-based collaborative model [C] // Proceedings of IEEEConference on Computer Vision and Pattern Recognition. LosAlamitos: IEEE Computer Society Press, 2012: 1838-1845.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部