期刊文献+

基于定量更新滑动窗口频繁闭项集挖掘算法研究

Research on a New Algorithm based on Sliding Window for Mining Closed Frequent Itemsets in Data Stream
下载PDF
导出
摘要 采用定量更新滑动窗口策略挖掘数据流频繁闭项集,提出TW-CFI(Time Windwos-Closed Frequent Itemsets)算法更好的解决了数据流频繁模式挖掘问题,挖掘过程中采用一种CFIT(Closed Frequent Itemsets Tree)存储结构,不仅包含当前数据流中的频繁闭项集,还通过时间窗口保存频繁闭项集的历史频繁计数。 An efficient algorithm based on ration sliding window strategy is proposed, which name is Time Windows-Closed Frequent Itemsets (TW-CFI). Utilizing the algorithm, we can significantly discover frequent closed itemsets in data stream. A new data structure called Closed Frequent Itemsets Tree (CFIT) is designed, the structure not only includes the current frequent closed itemsets, but preserves the history counts of old frequent closed itemsets in virtue of time windows.
出处 《软件》 2012年第12期101-102,共2页 Software
关键词 数据流挖掘 频繁闭项集 滑动窗口 时间窗口 mining data steam, closed frequent itemsets, sliding window, time window
  • 相关文献

参考文献2

  • 1Hua-Fu Li,Suh-Yin Lee,Man-Kwan Shan Online Mining (Recently) Maximal Frequent Itemsets over Data Streams. In Proc of the 15th International Workshop on Research Issues in Data Engineering:Stream Data Mining and Applications(RIDE-SDMA ' 05).
  • 2Y. Chi, H. Wang, P. Yu, and R. Muntz, MOMENT: Maintaining closed frequent itemsets over a stream sliding window. In. Proc. of 4.th. IEEE Intl. Conf. on Data Mining, Brighton, UK, November, 2004, pp.59-66.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部