摘要
研究汽车爆胎风险准确监测问题。汽车轮胎在不同路段运转过程中会发生不同程度的震动,一旦震动程度过大,汽车内气体压力信号波谱振幅增加,造成气体压力报警信号发生错误突变。传统智能监测算法是利用气压异常报警信号进行监测的,无法避免由于汽车震动程度过大造成的气体压力报警信号突变的缺陷,降低了轮胎爆胎风险报警监测的准确率。提出了一种利用粗糙集的支持向量机轮胎压力监测方法。通过粗糙集方法对轮胎压力采集点取值进行分类处理,利用支持向量机建立汽车轮胎压力异常监测模型,从而实现了汽车轮胎爆胎报警监测。仿真结果表明,改进算法能够提高汽车轮胎爆胎报警的准确率。
Research accurate recognition of automobile tire burst risks. Automobile tire structure is complex and has different degrees of vibration. This paper put forward a tire pressure monitoring method based on support vector machine (SVM). It sets method to collect the value of tire pressure, uses support vector machine method to establish automobile tire pressure abnormal monitoring model, thus fulfills the flat tire monitoring. The experiment results show that the algorithm can improve the accuracy of identification.
出处
《计算机仿真》
CSCD
北大核心
2013年第1期212-214,226,共4页
Computer Simulation
关键词
轮胎压力
粗糙集
支持向量机
Tire pressure
Rough set
Support vector machine (SVM)