期刊文献+

爆破振动特征参量的BP小波预测 被引量:5

Prediction of Blasting Vibration Characteristic Parameters by BP Wavelet Neural Network
下载PDF
导出
摘要 以福建泉州南惠高速公路NH5标段路基爆破开挖工程为实例,运用人工神经网络原理,以孔径、孔深、孔距、排距、最大单孔药量、单段最大药量、总药量和爆源距离作为影响爆破振动的主要因素,建立BP小波神经网络模型.对质点的水平径向、水平切向、垂直方向等3个方向分别预测其爆破振动速度峰值及频率,并将预测结果与BP神经网络、支持向量机的预测结果进行对比.实验结果表明:BP小波神经网络的爆破振动速度峰值-频率模型预测收敛快、精度高,优于标准BP网络和支持向量机模型,其结果更加符合国家标准GB 6722-2003《爆破安全规程》的评价要求. Taking the Nanhui expressway NH5 section′s subgrade blasting excavation project in Quanzhou,Fujian as example,adopting artificial neural network theory,the BP wavelet neural network model was established,which considers various main factors,such as the charge hole diameter,distance,and depth,column distance between charge holes,line maximum charge of single hole,maximum charge weight per delay interval,total charge and explosive distance.By the BP wavelet neural network model,the blasting vibration peak value and main frequency were predicted in three directions separately,namely horizontal radial,horizontal tangential and vertical.The prediction results were compared with BP neural network and support vector machine model.The results show that: BP wavelet neural network model of blasting vibration peak value and main frequency owns fast convergence and high precision,so BP wavelet neural network mode is better than BP neural network model and support vector machine model,it meets well the requirements of "Demolition Safety Regulation"(GB 6722-2003).
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2013年第1期77-81,共5页 Journal of Huaqiao University(Natural Science)
基金 福建省交通科技发展项目(200910)
关键词 爆破振动 主频率 BP小波神经网络模型 预测 blasting vibration main frequency BP wavelet neural networks model prediction
  • 相关文献

参考文献12

二级参考文献105

共引文献355

同被引文献50

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部