摘要
为了弥补蚁群算法在评价测试用例集质量方面的缺陷,应用基于序优化蚁群算法生成优先成对交互测试用例集。在生成测试用例时,采用one-test-at-a-time策略,通过序优化蚁群算法生成涵盖更多总增益的测试用例集,对信息素更新采用分阶段方式。仿真实验表明该算法在解的质量和收敛速度方面优于基本蚁群算法。
To compensate for the defects of ant colony algorithm in evaluating the quality of the test suite, a prioritised pairwise interaction test suite is generated with order optimisation--ant colony optimisation (O0-ACO) algorithm. While building the test suites, a one-test-at-a- time policy is adopted; OO-ACO is used to generate the test suite covering more total incremental benefits, and the phased approach is em- ployed to update the pheromone. Simulation experiments show that this algorithm is superior to the basic ant colony algorithm in both the qual- ity of solutions and the speed of convergence.
出处
《计算机应用与软件》
CSCD
北大核心
2013年第1期71-74,共4页
Computer Applications and Software
基金
国家自然科学基金项目(61050003)
关键词
交互测试
蚁群优化算法
序优化
总增益
Interaction testing Ant colony optimisation Order optimisation Total incremental benefits