期刊文献+

MapReduce框架下的朴素贝叶斯算法并行化研究 被引量:9

Parallelization of Naive Bayes Algorithm Under MapReduce Framwork
下载PDF
导出
摘要 研究朴素贝叶斯算法MapReduce的并行实现方法,针对传统单点串行算法在面对大规模数据或者参与分类的属性较多时效率低甚至无力承载大规模运算,以及难以满足人们处理海量数据的需求等问题,本文在朴素贝叶斯基本理论和MapReduce框架的基础上,提出了一种基于MapReduce的高效、廉价的并行化方法.通过实验表明这种方法在面对大规模数据时能有效提高算法的效率,满足人们处理海量数据的需求. This article focused on the realization of the parallelization of Naive Bayes. When it comes to large-scal data or multi-attributes, the traditional singal node algorithm has a low efficiency, or even is unable to host large-scale computing. All of these make the traditional algorithm cannot fit the need to deal with massive data. Therefore, based on the basic theory of Naive Bayes and the framework of MapReduce, this paper proposed a parallelization method of Naive Bayes, which is efficient and cheap.At the end, it is proved by experiments that this method can effectively improve the efficiency of the algorithm so as to meet the need of peoople to deal with massive data.
出处 《计算机系统应用》 2013年第2期108-111,共4页 Computer Systems & Applications
关键词 朴素贝叶斯 MAPREDUCE 并行化 云计算 Naive Bayes MapReduce parallelization cloud computing
  • 相关文献

参考文献6

二级参考文献45

  • 1Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 2Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 3Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 4Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 5Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 6Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 7Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 8Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.
  • 9Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350.
  • 10Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE. Bigtable: A distributed storage system for structured data. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 205-218.

共引文献1345

同被引文献113

引证文献9

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部