期刊文献+

基于非负稀疏编码的图像检索及应用 被引量:1

Scene retrieval based on non-negative sparse coding and its applications
下载PDF
导出
摘要 针对图像理解中所需的图像检索,提出了一种新的图像检索方法。该方法将非负稀疏编码引入到ScSPM算法中进行图像的特征提取和表示,计算特征表示后图像之间的欧氏距离并排序。实验结果表明该方法在图像理解中能够有效地检索相关图像。 This paper proposes a novel method of scene retrieval--scene retrieval based on non-negative sparse coding--in the field of image understanding. It adopts the algorithm of ScSPM, combines the algorithm of non-negative sparse coding to learn feature extraction and representation, and retrieves a set of K-nearest neighbors in database, then rank the Euclidean distance from the query image to each image. The experimental results show the proposed method of scene retrieval has good performances in the field of image understanding.
作者 杨小辉
出处 《信息技术》 2013年第1期39-42,共4页 Information Technology
基金 教育部新世纪优秀人才支持计划(NCET-10-0327)
关键词 图像检索 非负稀疏编码 图像理解 特征提取 特征表示 scene retrieval non-negative sparse coding image understanding feature extraction feature representation
  • 相关文献

参考文献22

  • 1江爱文,王春恒,肖柏华.基于GaborSIFT+NNScSPM图像特征抽取算法研究[J].自动化学报,2011,37(10):1183-1189. 被引量:2
  • 2Liu C, Yuen J, Torralba A. Nonparamelric Scene Parsing via Label Transfer[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) ,2011,33 (12) :2368 - 2382.
  • 3Liu C, Yuen J, Ton'alba A. Nonparametrie scene parsing: label trans- fer via dense scene alignment [ C ]. Computer Vision and Pattern Recognition (CVPR) ,2009.
  • 4Tighe J, Lazebnik S. Superparsing: Scalable Nonparametric Image Parsing with Superpixels[ C~. ECCV,2010.
  • 5Tighe J, Lezebnik S. Understanding Scenes on Many Levels[ C ]. IC- CV ,2011.
  • 6Belongie S, Malik V, Puzieha J. Shape context: A new descriptor for shape matching and object ~cognition[" Z]. Neural Information Pro- eessing Systems (NIPS) ,2000:831 - 837.
  • 7Koen E A van de Sande, Theo C, evers, CeesG M Snoek. Evaluating Color Descriptors for Object and Scene Recognition [J]. Pattern Analysis and Machine Intdligence,2010,32(9) :1582 -1596.
  • 8Oliva A,Ton'alba A. Modeling the shape of the scene:a holistic rep- resentation of the spatial envelope E J ]. UCV, 2001,42 ( 3 ) : 145 - 175.
  • 9David G Lowe. Object Recognition from Local Scale-Invariant Fea- tures [ C ]. ICCV, 1999 : 1150-1157.
  • 10David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints[J]. UCV,2004,60(2) :91 - 110.

二级参考文献25

  • 1Vailaya A, Figueiredo M A T, Jain A K, Zhang H J. Image classification for content-based indexing. IEEE Transactions on Image Processing, 2001, 10(1): 117-130.
  • 2Chang E, Goh K, Sychay G, Wu G. CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(1): 26-38.
  • 3Szummer M, Picard R W. Indoor-outdoor image classification. In: Proceedings of International Workshop on Content-Based Access of Image and Video Database. Bombay, India: IEEE. 1998. 42-51.
  • 4Serrano N, Savakis A E, Luo J B. Improved scene classification using efficient low-level features and semantic cues. Pattern Recognition, 2004, 37(9): 1773-1784.
  • 5Fan J P, Gao Y L, Luo H Z, Xu G Y. Statistical modeling and conceptualization of natural images. Pattern Recognition, 2005, 38(6): 865-885.
  • 6Luo J B, Savakis A E, Singhal A. A Bayesian network-based framework for semantic image understanding. Pattern Recognition, 2005, 38(6): 919-934.
  • 7Vogel J, Schiele B. Semantic modeling of natural scenes for content-based image retrieval. International Journal of Computer Vision, 2007, 72(2): 133-157.
  • 8Li F F, Perona P. A Bayesian hierarchical model for learning natural scene categories. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA: IEEE. 2005. 524-531.
  • 9Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, NewYork, USA: IEEE, 2006. 2169-2178.
  • 10Quelhas P, Monay F, Odobez J M, Gatica-Perez D, Tuytelaars T. A thousand words in a scene. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9): 1575-1589.

共引文献1

同被引文献15

  • 1Wright J,YANG A Y, Ganesh A, et al. Robust face recognition via sparse representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31 (2) :210-227.
  • 2Wright J,MA Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition [ J]. IEEE, 2010,98 (6): 1031-1044.
  • 3Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms [ C ]//Neural Information Processing Systems. Vancouver, Canada : MIT Press,2007 : 801-808.
  • 4Elad M, Figueiredo M A T, MA Y. On the role of sparse and redundant representations in image processing[ J ]. IEEE,2010,98 (6) :972-982.
  • 5ZHANG H, Nasrabadi N M, ZHANG Y, et al. Multi-observation visual recognition via joint dynamic sparse representation [ C ]// Processing of 2011 IEEE Intemalional Confenence on Computer Vision. Barcelona, Spain : IEEE ,2011:595-602.
  • 6Fukui K, Yamaguchi O. Face recognition using multi-viewpoint patterns for robot vision [ J ]. Springer Tracts in Advanced Robotics ,2005,15 : 192-201.
  • 7Cevikalp H, Triggs B. Face recognition based on image sets [ C ]//23rd IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA : IEEE, 2010:2567-2573.
  • 8Rakotomamonjy A. Surveying and comparing simultaneous sparse approx- imation (or group lasso) algorithms [ J ]. Signal Process- ing,2011,91 (7) :1505-1526.
  • 9Tropp J A, Gilbert A C, Strauss M J. Algorithms for simultaneous sparse approximation [ J ]. Sparse Approximations in Signal and Image Processing,2006,86( 3 ) : 572-588.
  • 10严严,章毓晋.基于视频的人脸识别研究进展[J].计算机学报,2009,32(5):878-886. 被引量:84

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部