期刊文献+

基于形状特征的红外目标检测方法 被引量:12

Infrared target detection based on shape characteristics
下载PDF
导出
摘要 针对红外地面固定目标无直接可用基准图,目标边缘模糊,不利于目标识别检测等问题,提出一种新的基于形状特征的红外目标检测方法。首先在依据红外图像形状特征的基础上,引入图像的灰度形态学梯度,扩展对比度、增长图像边缘特征;其次进行多子区划分,并设计像素相似性计算,有效地结合了像素点的灰度信息以及空间位置;最后在考虑实时图中非真实边缘影响时,加入了Canny算子检测边缘,分离目标与背景,在红外实时图中检测出所需的目标。实验结果表明,本文所提算法检测率能达到80%以上,与直方图检测方法、Hausdorff算法、Nprod算法相比,分别平均提高了近10%,11%,20%,算法花费时间缩短2/3。对于红外固定目标,该方法具有检测率高、速度快、精度高等优点。 For the infrared image of fixed target without available base image,it is difficult to recognize the target due to the blurry target edge. A new target detection algorithm based on shape characteristics matching is proposed. First ly, based on shape characteristics of infrared image, the mathematic morphological gradient algorithm is introduced in order to expand contrast and strengthen edge character. Secondly, multi seedregions are designed, and similarity cal culation of pixels is introduced. Pixels' gray information and spatial location are integrated efficiently. Lastly, consider ing the impact of unreal edge, Canny operator is added into the edge detection for separating the target and back ground. The requisite target is detected in the real infrared image. Experiment results show that the detection probabili ty can reach up to 80%. Comparing to histogram detection algorithm, Hausdorff distance algorithm and Nprod algo rithm,the probability increases by 10% , 11% and 12% respectively and the spent time is shortened to 2/3. This method has better performance at detection probability ,computing speed and recognition precision.
出处 《激光与红外》 CAS CSCD 北大核心 2013年第1期49-53,共5页 Laser & Infrared
关键词 形状特征 多子区 像素相似性 空间位置 目标检测 shape character multiple seed-region similarity of pixels spacial location target detection
  • 相关文献

参考文献14

  • 1Huttenlocher Daniel P,Klanderman Gregory A,Ruck lidge William J. Comparing images using the hausdorff distance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,(09):850-863.
  • 2Ling H. Techniques in image retrieval:deformation insensitivity and automatic thumbnail cropping[D].United States Maryland:University of Maryland,College Park,2006.
  • 3张晟翀,刘彤宇.低空背景下红外目标提取跟踪算法研究[J].激光与红外,2010,40(5):546-548. 被引量:4
  • 4Sirmacek B,Unsalan C. Urban-area and building detection using SIFT keypoints and graph theory[J].IEEE Transactions on Geoscience and Remote Sensing,2009,(04):1156-1167.
  • 5Laptev I. Improving object detection with boosted histograms[J].Image and Vision Computing,2009,(05):535-544.
  • 6Ananthakrishnan K,Kodikara N D. Road sign detection and recognition using scale invariant feature transform[J].PSLIIT,2008,(02).
  • 7冈萨雷斯.数字图像处理[M]北京:电子工业出版社,2003445-453.
  • 8孙新德,薄树奎,李玲玲.基于背景估计的红外图像杂波抑制方法研究[J].激光与红外,2011,41(5):586-590. 被引量:12
  • 9魏本征,赵志敏,华晋.基于改进形态学梯度和Zernike矩的亚像素边缘检测方法[J].仪器仪表学报,2010,31(4):838-844. 被引量:55
  • 10徐同莹,彭定明,王卫星.改进的直方图均衡化算法[J].兵工自动化,2006,25(7):58-59. 被引量:19

二级参考文献63

共引文献166

同被引文献392

引证文献12

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部