期刊文献+

基于空间-光谱字典的不完备高光谱图像重构 被引量:3

Incomplete hyperspectral image reconstruction based on spatial-spectral dictionary
下载PDF
导出
摘要 提出了一种新的空间-光谱字典学习方法,用于不完备高光谱图像的重构。根据高光谱图像具有丰富的空间和谱间相关性的特点,将高光谱图像分割成三维重叠的小立方体块,从中学习出能够对这些块进行稀疏表示的空间-光谱字典。首先固定字典,用非负正交匹配追踪法计算稀疏系数;然后固定系数,用梯度下降法更新字典,上述两步交替进行直到算法收敛。依据这种分块模型学习出的字典更符合高光谱图像的特点。在谱向上字典原子为物质的光谱反射曲线,在空间向上字典为普通二维空间块字典。最后将字典应用于不完备高光谱图像的重构,实验结果表明,该方法以较低的采样率获得了良好的重构效果。 A novel spatial-spectral dictionary learning algorithm is proposed and applied to reconstruct the incomplete hy- perspectral images. According to the characteristic that hyperspectral images have rich spatial and spectral correlations,the hyperspectral image is divided into 3D small overlapping cube blocks. The spatial-spectral dictionary that can represent these blocks sparsely is learned. First, assuming the dictionary is fixed, non-negative orthogonal match pursuit method is used to calculate the sparse coefficients ;second, assuming the coefficients are fixed,gradient descent method is used to up-date the dictionary ;these two steps are alternately used until the algorithm is converged. The dictionary learned from this block model is consistent with the characteristics of the hyperspectral images. At the spectral direction ,the dictionary atoms are the spectral reflection curves of the real materials;at the spatial direetion,the dictionary is ordinary 2D spatial bloek dictionary. The spatial-spectral dictionary was applied to reconstruct the incomplete hyperspectral images. Experiment results show that this algorithm can achieve satisfied results with a low sampling rate.
作者 练秋生 赵阳
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第1期112-118,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61071200 60772079) 河北省自然科学基金(F2010001294)资助项目
关键词 高光谱图像 字典学习 稀疏表示 空间相关性 谱间相关性 hyperspectral image dictionary learning sparse representation spatial correlation spectral correlation
  • 相关文献

参考文献19

  • 1何元磊,刘代志,易世华,黄世奇.面向目标探测的高光谱图像层次聚类波段选择[J].仪器仪表学报,2011,32(4):825-830. 被引量:12
  • 2Demir B,Erturk S. Clustering based extraction of border training patterns for accurate SVM classification of hyperspectral images[J].IEEE Transactions on Geoscience and Remote Sensing,2009,(04):840-844.
  • 3King K,Kerekes J. Development of a Web-based blind test to score and rank hyperspectral classification algorithms[A].Rochester,NY,2010.54-57.
  • 4YUAN Q Q,ZHANG L,SHEN H F. Hyperspectral image denoising employing a spectral-spatial adaptive total variation model[J].IEEE Transactions on Geoscience and Remote Sensing,2012.1-18.
  • 5XING Z M,ZHOU M Y,CASTRODAD A. Dictionary learning for noisy and incomplete hyperspectral images[J].Society for Industrial and Applied Mathematics,2012,(01):33-56.
  • 6LI C B,SUN T,KELLY K. A compressive sensing and unmixing scheme for hyperspectral data processing[J].IEEE Transactions on Image Processing,2011,(03):1200-1210.
  • 7GOLBABAEE M,ARBERET S,VANDERGHEYNST P. Multichannel compressed sensing via source separation for hyperspectral images[M].Eusipco,Aalborg,Denmark,2010.23-27.
  • 8CHEN Y,NASRABADI N M,TRAN T D. Hyperspectral image classification using dictionary-based sparse representation[J].IEEE Geoscience and Remote Sensing Society,2011,(10):3973-3985.
  • 9CHEN G,Q1AN S,XIE W. Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage[J].IEEE Transactions on Geoscience and Remote Sensing,2011,(03):973-980.
  • 10VALIOLLAHZADEH S,YIN W. Hyperspectral data reconstruction combining spatial and spectral sparsity[R].Rice University CAAM Technical Report TR10-29,2010.

二级参考文献43

  • 1JINN M Y, PAO T Y, BOR C K. A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3) : 1279-1293.
  • 2MAHESH P, GILES M F. Feature selection for classification of hyperspectral data by SVM [J]. IEEE Transac- tions on Geoscience and Remote Sensing, 2010, 48(5) : 2297 -2307.
  • 3NIRMAL K. Best bands selection for detection in hyperspectral processing [ C ]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Utah, 2001(5) : 3149-3152.
  • 4DU Q. Band selection and its impact on target detection and classification in hyperspectral image analysis [ C ]. IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, Maryland, 2003, 374-377.
  • 5DU Z, MYONG K J, SEONG G K. Band selection of hyperspectral images for automatic detection of poultry skin tumors [ J ]. IEEE Transactions on Automation Science and Engineering, 2007, 4(3) : 332-339.
  • 6CHEIN I C. Multiparameter receiver operating characteristic analysis for signal detection and classification [ J ]. IEEE Sensors Journal, 2010, 10 ( 3 ) : 423 442.
  • 7JOSE M D, JSOEE M P. Hyperspectral subspace identification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46 ( 8 ) : 2435-2445.
  • 8CHEIN I C. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis [ J ]. IEEE Transactions on Information Theory, 2000, 46 (5) : 1927-1932.
  • 9DU Y Z, CHEIN I C, HSUAN R. New hyperspectral discrimination measure for spectral characterization [ J ]. Optical Engineering, 2004, 43 (8) : 1777-1786.
  • 10CHEIN I C, SU W. Constrained band selection for hyperspectral imagery [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6) : 1575-1585.

共引文献17

同被引文献20

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部