期刊文献+

甲状腺疾病的最新实验室诊断指标及各诊断指标的相关性 被引量:4

下载PDF
导出
摘要 目的:探讨甲状腺疾病实验室各诊断指标的相关性,甲亢及甲低各诊断指标的平行性和其他甲状腺疾病各诊断指标的不平行性。方法:观察组为225例已确诊的甲状腺疾病的患者,50例健康人为对照组。应用化学发光法测定血清游离甲状腺激素(FT3、FT4)、促甲状腺素(sTSH)、甲状腺球蛋白抗体(TGab)、甲状腺过氧化物酶抗体(TPOab)的水平。结果:观察组与对照组的各指标差异显著,50.6%的诊断指标具有平行性,49.4%的诊断指标不具有平行性。结论:血清甲状腺各指标的检测对甲状腺功能紊乱的类型、病情评估、疗效检测上有着非常重要的价值,对那些指标不平行的非典型的甲状腺疾病的鉴别也起着非常重要的作用。
出处 《中国民康医学》 2013年第3期62-63,共2页 Medical Journal of Chinese People’s Health
  • 相关文献

参考文献5

二级参考文献8

  • 1单忠艳,滕卫平.甲状腺疾病与妊娠[J].国际内分泌代谢杂志,2006,26(5):295-302. 被引量:104
  • 2冯凭.甲状腺疾病[M].天津科技翻译出版社,1995.32.
  • 3The National Academy of Clinical Biochemistry(NACB).Laboratory Medicine Practice Guidelines:Laboratory support for the diagnosis and monitoring of thyroid disease[J].Thyroid,2003,13(1):3-126.
  • 4Weiping T,Zhongyan S,Xiaochun T,et al.Effect of iodine intake on thyroid disease in China[J].N Engl J Med,2006,354:2783 -2793.
  • 5The American Thyroid Association Guidelines Taskforce.Management guidelines for patients with thyroid nodules and differentiated thyroid cancer[J].Thyroid,2006,16 (2):109-141.
  • 6高天舒,滕卫平,单忠艳,金迎,关海霞,滕晓春,杨帆,王微波,史晓光,佟雅洁,李丹,陈威.不同碘摄入量农村学龄前儿童甲状腺疾病及智商水平流行病学调查[A]中华医学会第六次全国内分泌学术会议论文汇编,2001.
  • 7周津东,邵新华,刘树业,张为民,赵建忠,张明利.人甲状腺过氧化物酶的提取、纯化及鉴定[J].天津医科大学学报,1998,4(1):16-18. 被引量:1
  • 8金迎,滕卫平,苑柏,张永刚,尹长春.Graves病多发家系成员甲状腺自身免疫状况及碘摄入量对其发病率的影响[J].中华内分泌代谢杂志,2001,17(2):79-82. 被引量:23

共引文献62

同被引文献44

  • 1Ozyilmaz L, Yildirim T. Diagnosis of thyroid disease using artificial neural network methods [ C ]// Proceedings of the 9th International Conference on Neural Information Process- ing. 2002,4:2033-2036.
  • 2Temurtas F. A comparative study on thyroid disease diag- nosis using neural networks [ J ]. Expert Systems with Ap- plications, 2009,36 ( 1 ) : 944-949.
  • 3Isa I S, Saad Z, Omar S, et al. Suitable MLPnetwork acti- vation functions for breast cancer and thyroid disease detec- tion [ C ]// Proceedings of the 2nd International Conference on Computational Intelligence, Modelling and Simulation. 2010:39-44.
  • 4Keles Ali, Keles Aytilrk. ESTDD: Expert system for thy- roid diseases diagnosis [ J ]. Expert Systems with Applica- tions, 2008,34( 1 ) :242-246.
  • 5Uauz H. A two-stage feature selection method for text cate- gorization by using information gain, principal component analysis and genetic algorithm [ J ]. Knowledge-based Sys- tems, 2011,24(7) :1024-1032.
  • 6Valle S, Li Weihua, Qin S J. Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods [ J ]. In- dustrial & Engineering Chemistry Research, 1999, 38 ( 11 ) :4389-4401.
  • 7Jolliffe I T. Principal Component Analysis [ M ]. Springer Verlag, 1986 : 1-47.
  • 8Webb G I. Decision tree grafting from the all tests but one partition[ C ]/// Proceedings of the 16th International Joint Conference on Artificial Intelligence. 1999:702-707.
  • 9Rodriguez J J, Kuncheva L I, Alonso C J. Rotation forest: A new classifier ensemble method [ J ]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006, 28 (10) :1619-1630.
  • 10Breiman L. Bagging predictors [ J]. Machine Learning, 1996,24(2) :123-140.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部