期刊文献+

基于归属不确定性的变规模网络重叠社区识别 被引量:9

Variable Scale Network Overlapping Community Identification Based on Identity Uncertainty
下载PDF
导出
摘要 拓扑势理论是一种新的复杂网络社区识别理论.针对该理论和方法存在的应用范围不明确和社区重叠节点数量过少等问题,提出基于归属不确定性的变规模网络重叠社区识别方法.在证明拓扑势熵最小值点存在性的基础上,该方法通过提出重叠节点社区归属不确定性测度以及变规模社区的概念和思想,实现社区的有效识别.通过实验验证了该测度的合理性和有效性.实验结果表明,该方法不但具有识别变规模重叠社区的能力,而且还可获得与拓扑势方法相当的社区识别效果. Topological potential theory is a novel community identification theory on complex networks. Aiming at some in- adequacies of the theory and its method, such as ambiguous application scope and excessively sparse overlapping nodes, a variable scale network overlapping community identification method based on identity uncertainty is proposed. On the basis of proving the existence of the minimum point of topological potential entropy, the method identifies communities effectively by proposing an iden- tity uncertainty measure of overlapping nodes and an idea of variable scale community. The effectiveness and reasonableness of the measure are verified in experiments. The results of experiments show that the method not only has the capability of identifying vari- able scale communities but also can obtain an equivalent result of community identification of topological potential method;
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第12期2512-2518,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61073043 No.61073041 No.61100008) 黑龙江省自然科学基金(No.F200917 No.F201023 No.F200901) 高等学校博士学科点专项科研基金(No.20112304110011) 哈尔滨市优秀学科带头人基金(No.2010RFXXG002 No.2011RFXXG015) 中央高校基本科研业务费专项资金(No.HEUCF061002)
关键词 复杂网络 拓扑势 重叠社区 变规模 不确定性测度 complex network topological potential overlapping community variable scale uncertainty measure
  • 相关文献

参考文献4

二级参考文献25

共引文献101

同被引文献70

  • 1赵卓翔,王轶彤,田家堂,周泽学.社会网络中基于标签传播的社区发现新算法[J].计算机研究与发展,2011,48(S3):8-15. 被引量:37
  • 2WArI3"S D J, STROGATZ S H. Collective dynamics of "small- world" networks [ J ]. Nature, 1998,393 (84) : 440-442.
  • 3GIRVAN M, NEWMAN M E J. Community structure in social and biological networks [ J]. Proceedings of the National A- cademy of Sciences of the United States of America, 2002,99 (12) :7821-7826.
  • 4NEWMAN M E J, GIRVAN M. Finding and evaluating com- munity structure in networks [ J ]. Physical Review E, 2004, 69(2) :026113.
  • 5PALLA G, DERENYI T, FARKAS T, et al. Uncovering the o- verlapping community structure of complex networks in nature and society [ J ]. Nature, 2005,435 (7043) : 814-818.
  • 6AHN Y Y, BAGROW J P, LEHMANN S. Link communities reveal muhiscale complexity in networks [ J ]. Nature, 2010, 466 ( 7307 ) : 761-764.
  • 7NEWMAN M E J. Fast algorithm for detecting community structure in networks [ J ]. Physical Review E, 2004,69 (6) : 066133.
  • 8BLONDEL V D, GUILLAUME J L, LAMBIOTYE R, et al. Fast unfolding of communities in large networks [ J ]. Journal of Statistical Mechanics: Theory and Experiment, 2008 (10) : 10008.
  • 9LANCICHINETYI A, FORTUNATO S, KERTESZ J.Detecting the overlapping and hierarchical community structure of com- plex networks [ J ]. New Journal of Physics, 2009, 11: 033015.
  • 10TASGIN M, HERDAGDELEN A, BINGOL H. Community detection in complex networks using genetic algorithms [ EB/ OL]. (2012-12-15) .http ://arxiv.org/abs 0711.0491vl.

引证文献9

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部