期刊文献+

Stampacchia型和Minty型似变分不等式解的性质 被引量:1

The Properties of the Solution in Stampacchia-Type and Minty-Type Variational-Like Inequalities
下载PDF
导出
摘要 在实n维欧式空间Rn中利用上Dini方向导数构造了Minty型似变分不等式的间隙函数G(x),并在此基础上讨论了Stampacchia型和Minty型这两类似变分不等式的解与G(x)的关系,得到了2类似变分不等式解集相等的1个充分条件. Gap function G(x) of the Minty-type variational-like inequalities was constructed by upper Dini directional derivative in a real n-dimensional Euclidean space.And some relations between solutions of Stampacchia-type and Minty-type variational-like inequalities and G(x) are investigated.A sufficient condition of two class of variational-like inequality solution sets equal is obtained.
作者 赵亮 刘学文
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2012年第6期598-601,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(11001289) 重庆市教委科研(KJ100608)资助项目
关键词 解集 伪单调 间隙函数 似变分不等式 solution set pseudomonotone gap function variational-like inequalities
  • 相关文献

参考文献12

  • 1Parida J,Sahoo M,Kumar A. A variational-like inequality prob-lem[J].Bulletin of the Australian Mathematical Society,1989,(02):225-231.
  • 2Crespi G P,Ginchev I,Rocca M. Minty variational inequalities,increase along rays property and optimization[J].Journal of Op-timization Theory and Applications,2004,(03):479-496.
  • 3Crespi G P,Ginchev I,Rocca M. Existence of solutions and star-shapedness in minty variational inequalities[J].Journal of Global Optimization,2005,(04):485-494.
  • 4Ivanov V I. Optimization and variational inequalities with pseu-doconvex functions[J].Journal of Optimization Theory and Applications,2010,(03):602-616.
  • 5Liu Caiping,Yang Xinmin,Lee H W. Characterizations of the solution sets of pseudoinvex programs and variational inequalities[J].Journal of Inequalities and Applications,2011,(01):1-13.
  • 6Weir T,Mond B. Preinvex functions in multiple objective opti-mization[J].Journal of Mathematical Analysis and Applications,1988,(01):29-38.
  • 7Ansari Q H,Rezaei M. Generalized pseudolinearity[J].Optimization Letters,2012,(02):241-251.
  • 8Mohan S R,Neogy S K. On invex sets and preinvex functions[J].Journal of Mathematical Analysis and Applications,1995,(03):901-908.
  • 9Sach P H,Penot J P. Characterizations of generalized convexities via generalized directional derivative[J].Numerical Functional Analysis and Optimization,1998,(5/6):615-634.
  • 10王岗,刘学文,姜艮,吴传平.一类变分不等式问题解集的刻画[J].江西师范大学学报(自然科学版),2011,35(4):388-390. 被引量:1

二级参考文献16

  • 1Crespi G, Ginchev I, Rocca M. Minty variational inequalities, increase along rays property and optimization [J]. J Optim Theory Appl, 2004, 123(3): 479-496.
  • 2Crespi G, Ginchev I, Rocca M. Existence of solutions and star-shapedness in Minty variational inequalities [J]. J Glob Optim, 2005, 32(4): 485-494.
  • 3Ivanov V I. Optimization and variational inequalities with pseudoconvcx functions [J]. J Optim Theory Appl, 2010, 146(3): 602-616.
  • 4Wu Zili, Wu Soonyi. Characterizations of the solution sets of convex grograms and variational/ncquality problems [J]. J Optim Theory Appl, 2006, 130(2): 341-360.
  • 5Giandomenieo Mastroeni. Gap functions and descent methods for minty variational inequiality [M]. Pisa: Optimazation and Control with Applications, 2000: 530-547.
  • 6Larsson T, Patriksson M. A class of gap functions for variational inequalities [J]. Mathematical Programming, 1994, 64(1/2/3): 53-79.
  • 7Ya-ping Fang,Nan-jing Huang.Increasing-along-rays property, vector optimization and well-posedness[J]. Mathematical Methods of Operations Research . 2007 (1)
  • 8Giovanni P. Crespi,Ivan Ginchev,Matteo Rocca.Existence of Solutions and Star-shapedness in Minty Variational Inequalities[J]. Journal of Global Optimization . 2005 (4)
  • 9G. P. Crespi,I. Ginchev,M. Rocca.Minty Variational Inequalities, Increase-Along-Rays Property and Optimization1[J]. Journal of Optimization Theory and Applications . 2004 (3)
  • 10Yang X M,Yang X Q,Teo K L.Criteria for Generalized Invex Monotonicities. European Journal of OperationalResearch . 2005

共引文献2

同被引文献11

  • 1黄应全,赵克全.r-预不变凸函数的两个充分条件[J].重庆师范大学学报(自然科学版),2004,21(4):17-18. 被引量:4
  • 2吴从圻 马明.模糊分析学基础[M].北京:国防工业出版社,1991.87-94.
  • 3Nanda S, Kar K. Convex fuzzy mappings [ J ]. Fuzzy Sets System, 1992,48 ( 1 ) :129-132.
  • 4Syau Y R. Generalization of preinvex and B-vex fuzzy mappings [ J ]. Fuzzy Sets and Systems, 2001,120 ( 3 ) : 533-542.
  • 5Panigrahi M, Panda G, Nanda S. Convex fuzzy mappings with differentiability and its application in fuzzy optimiza- tion [ J ]. European Journal of Operational Research,.2008,185( 1 ) :47-62.
  • 6Noor M A. Fuzzy preinvex functions [ J ]. Fuzzy Sets and Systems, 1994,64( 1 ) :95-104.
  • 7Youness E A, Avriel M. E-convex sets, E-convex function and E-convex programming [ J ]. Journal of Optimization Theory and Applications, 1999,102 (2) :439-450.
  • 8Wang Guixiang, Wu Congxin. Directional derivatives and subdifferential of convex fuzzy mappings and application in convex fuzzy programming [ J ]. Fuzzy Sets Syst,2003,138 (3) :559-591.
  • 9Wu Zezhong, Xu Jiuping. Nonconvex fuzzy mappings and the fuzzy prevariational inequality [ J ]. Fuzzy Sets Sys- tems,2008,159(16) :2090-2103.
  • 10Fulga C,Preda V. Nnlinear programming with E-preinvex and local E-preinvex functions [ J ]. European Journal of Operational Research,2009,192 (3) :737-743.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部