期刊文献+

硅中热施主在热过程中的消长研究 被引量:1

STUDY ON ANNIHILATION AND REGENERATION OF THERMAL DONORS DURING THERMAL PROCESSES IN SILICON
原文传递
导出
摘要 研究退火消除直拉单晶硅中热施主的效果以及在后续热过程中热施主的再形成规律。实验结果显示,采用650℃保温40min的退火可有效消除直拉单晶硅锭肩下部形成的热施主,并使其少子寿命恢复到实际值。消除了热施主的硅锭肩下部硅片在后续的900℃/40min加热后以小于11℃/min的速率冷却,硅片的热施主会再次生成,热施主的再生成量随冷却速率增加而减少,当冷却速率达100℃/min时可避免热施主的再次生成。实验结果还显示,采用3℃/min速率慢冷至550℃再以100℃/min的速率快冷至室温的两步冷却也可避免该硅片热施主的再次生成。实验还发现,消除了热施主的硅锭肩下部硅片经900℃/40min加热后的少子寿命随冷却速率的增加而降低;经上述两步冷却与3℃/min速率一步慢冷得到的少子寿命基本相等。 The effect on eliminating thermal donors (TDs)by annealing and re-formation behavior of TDs during subsequence thermal processes in Czochralski silicon(Cz-Si) was investigated. The experimental results show that the TDs below shoulder of Cz-Si ingot can be effectively eliminated by annealing at 650℃ for 40 minutes, and the minority carrier lifetime of the wafers should be recovered to actual value. TDs should be re-formed when the Cz-Si wafer eliminated TDs heated with 900℃/40min and with cooling rate less than 11 ℃/min, With increase of the cooling rate, the amounts of re-formed TDs decrease, when the cooling rate increase to 100℃/min ,the TDs were almost not re-formed. The experimental results also indicated that two step cooling that cool with 3℃/min rate to 550℃ then with 100℃/min rate to room temperature can also avoid TDs re-forming. It was also found that minority carrier lifetime in the Cz-Si showed a tendency of decrease with increase of the cooling rate. The minority carrier li- fetime of Cz-Si wafers after the two step cooling was almost the same as that after cooling with 3~C/rain rate to room temperature.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2013年第1期50-55,共6页 Acta Energiae Solaris Sinica
关键词 直拉单晶硅 热施主 热过程 thermal processes Cz silicon thermal donors
  • 相关文献

参考文献10

  • 1Hauler C, Hofs H U, Koch W, et al. Formation and an-nihilation of oxygen donors in multierystalline silicon for solar cells [ J ]. Materials Science and Engineering B, 2000, 71(1-3) : 39-46.
  • 2阙端麟,陈修治.硅材料科学与技术[M].杭州:浙江大学出版社,2001.
  • 3Gregorkiewicz T, Bekman H H P Th. Thermal donors and oxygen-related complexes in silicon [ J ]. Materials Science and Engineering B, 1989, 4(1-4) : 291-297.
  • 4Gotz W, Pensl G, Zulehner W, et al. Thermal donor formation and annihilation at temperatures above 500℃ in Czochralski-grown Si [ J ]. Journal of Applied Physics, 1998, 84(7): 3561-3568.
  • 5Gosele U. Oxygen diffusion and thermal donor formation in silicon [ J ]. Applied Physics A: Materials Science & Processing, 1982, 28(2): 79-92.
  • 6Dubey Vikash, Singh Shyam. Formation of oxygen related donors in step-annealed CZ-silicon[ J]. Bulletin of Material Science, 2002, 25(7) : 589-592.
  • 7俞征峰,席珍强,杨德仁,阙端麟.铸造多晶硅中热施主形成规律[J].太阳能学报,2005,26(4):581-584. 被引量:4
  • 8周浪.光伏硅晶材料的热改性与电池工艺[R].苏州:道达尔中国论坛-先进太阳电池技术,2010.
  • 9席珍强,杨德仁,陈君,王晓泉,汪雷,阙端麟,H.J.Moeller.晶体硅中的铁沉淀规律[J].Journal of Semiconductors,2003,24(11):1166-1170. 被引量:8
  • 10周潘兵,柯航,周浪.热处理和冷却速率对直拉单晶硅少子寿命的影响[J].材料热处理学报,2012,33(8):23-27. 被引量:3

二级参考文献40

  • 1Myers S M, Seibt M, Schroeter W. Mechanisms of transitionmetal gettering in silicon. J Appl Phys, 2000,88 : 3795.
  • 2Istratov A A, Hieslmair H, Weber E R, et al. Iron and its complexes in silicon. Appl Phys A, 1999,69 : 13.
  • 3Istratov A A,Hieslmair H,Weber E R. Iron contamination in silicon technology. Appl Phys A, 2000,70: 489.
  • 4Reiss J H, King R R, Mitchell K W. Characterization of diffusion length degradation in Czochralski silicon solar cells. Appl Phys Lett,1996,68:3302.
  • 5Wijaranakula W, Kim S S. Precipitation of 3d transition-metal silicides in Czochralski silicon crystals. J Appl Phys, 1994, 76:6017.
  • 6Henley W B, Ramappa D A. Iron precipitation in float zone grown silicon. J Appl Phys, 1997,82 : 589.
  • 7Shen Bo, Sekiguchi T, Zhang Rong, et al. Precipitation of Cu and Fe in dislocated floating-zone-grown silicon. Jpn J Appl Phys, 1996,35 :3301.
  • 8Shen B,Sekiguchi T,Zhang R,et al. Precipitation of Cu,Ni, and Fe on Frank-type partial dislocations in Czochralskigrown silicon. Phys Status Solidi A, 1996,155 : 321.
  • 9Wijaranakula W. Iron precipitation at oxygen related bulk defects in Czochralski silicon. J Appl Phys, 1996,79 : 4450.
  • 10Hieslmair H, Istratov A A, McHugo S A,et al. Precipitation of iron in FZ and Cz silicon. Materials Science Forum, 1997,258-263:449.

共引文献12

同被引文献12

  • 1邓海,杨德仁,唐骏,席珍强,阙端麟.铸造多晶硅中杂质对少子寿命的影响[J].太阳能学报,2007,28(2):151-154. 被引量:24
  • 2阙端麟,陈修治.硅材料科学与技术[M].杭州:浙江大学出版社,2001.
  • 3周浪.硅晶材料及太阳电池的热改性[R].道达尔中国论坛.先进太阳电池技术.苏州.2010.
  • 4Buonassisi T, Istratov A A, Marcus M A, et al. Syn-chrotron-based investigations into metallic impurity dis- tribution and defect engineering in muhicrystalline sili- con via thermal treatments [ A ]. Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference [C], Lake Buena Vista, Florida, 2005, 1027-10301.
  • 5Rohatgi A, Rai-Choudhury P. Defect and carrier life- time in silicon [ A']. Gupta D C. Silicon Processing [ C ], American Society for Testing and Materials, 1983, 389-404.
  • 6Xi Zhenqiang, Yang Deren, Chen Jun, et al. Iron precipitation in crystalline silicon [ J ]. Chinese Journal of Semiconductors, 2003, 24 ( 11 ) : 1166-1171.
  • 7Semilab WT 2000PV User Manual[Z]. 2008, 8.
  • 8Palais O, Martinuzzi S, Simon J J. Minority carrier li- fetime and metallic-impurity mapping in silicon wafers [J ]. Materials Science in Semiconductor Processing, 2001, 4 (1-3) : 27-29.
  • 9Palais O, Yakimov E, Martinuzzi S. Minority carrier lifetime scan maps applied to iron concentration mapping in silicon wafers Materials [ J ]. Materials Science and Engineering: B, 2002, 91-92: 216-219.
  • 10Istratov A A, Hieslmair H, Weber E R. Iron and its complexes in silicon [ J ]. Applied Physics A, 1999, 69(1): 13-44.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部