期刊文献+

基于LRU-BF策略的网络流量测量算法 被引量:26

Traffic measurement algorithm based on least recent used and Bloom filter
下载PDF
导出
摘要 针对传统大流检测算法漏检率高的缺陷,提出了一种基于LRU-BF(least recent used&Bloom filter)策略的流量测量算法。该算法使用LRU淘汰机制、Bloom filter快速表示方案,将"大流过滤"和"大流判断"分离,较大地提高了测量的准确性。基于"概率论"的相关知识,对算法进行了理论分析,建立了错误概率上界的解析表达式。仿真结果表明:与传统Na ve-LRU算法相比,LRU-BF具有较低错误概率和空间复杂度的同时,也能满足单线路10Gbit/s的线速报文处理能力。 Aiming at the naive algorithm's deficiency of high false negative probability, a novel scheme called LRU-BF(least recent used & Bloom filter) was presgnted. In order to achieve high accuracy, the algorithm adopted mechanisms of LRU eliminating and Bloom filter represeentation to separate the process of heavy-hitter fliteration from the heavy-hitter recognition. Based on statistical theory, ,analytical expressions about upper-bound error probability were deduced. Simulated results indicate that LRU-BF can achieve space saving and lower error probability compared with Naive-LRU algorithm. Meanwhile, it can also support,the 10Gbit/s line-speed processing.
出处 《通信学报》 EI CSCD 北大核心 2013年第1期111-120,共10页 Journal on Communications
基金 国家重点基础研究发展计划("973"计划)基金资助项目(2012CB312901 2012CB312905)~~
关键词 网络安全 LRU BLOOM FILTER 流量测量 network security LRU Bloom filter traffic measurement
  • 相关文献

参考文献18

  • 1FANG W,PETERSON L. Inter-as traffic patterns and their implica-tions[A].New York,USA,1999.1859-1868.
  • 2ESTAN C. New directions in traffic measurement and accounting[A].Oklahoma,USA,2002.562-574.
  • 3MORI T,KAWAHARA R,NAITO S. On the characteristics of Internet traffic variability:spikes and elephants[A].{H}Tokyo,Japan,2004.99-106.
  • 4FELDMANN A,GREENBERG A,LUND C. Deriving traffic demands for operational IP networks:methodology and experience[J].{H}IEEE/ACM Transactions on Networking,2001,(03):265-279.
  • 5KODIALAM M,LAKSHMAN T V,MOHANTY S. Runs based traffic estimator (RATE):a simple, memory efficient scheme for per-flow rate es-timation[A].Hongkong,China,2004.542-556.
  • 6HAO F,KODIALAM M,LAKSHMAN T V. Fast, memory-efficient traffic estimation by coincidence counting[A].Miami,Florida,USA,2005.432-445.
  • 7KUMAR A,XU J. Sketch guided sampling-using on-Line estimates of flow size for adaptive data collection[A].Barcelona,Spain,2006.467-482.
  • 8LALL A,OGIHARA M,XU J. An efficient algorithm for measuring medium to large-sized flows in network traffic[A].Rio de Janeiro,Brazil,2009.2711-2715.
  • 9MORI T,TAKINE T,PAN J P. Identifying heavy-hitter flows from sampled flow statistics[J].IEICE Transactions on Communica-tion,2007,(11):3061-3071.
  • 10KIM S I,REDDY N A L. Identifying long-term high-bandwidth flows at a router[A].Hyderabad,India,2001.361-371.

同被引文献230

引证文献26

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部