期刊文献+

基于语义文本挖掘的企业竞争对手分析模型研究 被引量:4

A Competitor Analysis Model Based on Semantic Text Mining
下载PDF
导出
摘要 为弥补传统竞争对手分析方法无法有效挖掘网络化企业竞争对手信息的缺陷,本文将语义文本挖掘技术引入企业竞争对手分析中,提出了一个基于语义文本挖掘的企业竞争对手分析模型。该模型采用规则化主题爬取技术获取结构化信息,利用竞争情报领域本体知识库和语义VSM矩阵实现竞争对手信息语义分析和描述,通过基于语义的文本挖掘技术提取竞争对手深层次语义知识。行以相机市场的两大竞争力企业——佳能、尼康为例进行了实证分析研究,实验结果表明,该模型具有潜在的实际应用价值,可有效提高企业决策水平。 In order to make up for the failure of traditional competitor analysis methods to mine information about corporate competitors in Web, this paper puts forward a competitor analysis model based on semantic text mining, involving text mining technology into the enterprise competitor analysis. This model adopts the regularized topical crawling technologies to obtain structured information, uses competitive ontology knowledge base and semantic VSM matrix to achieve semantic analysis and description of competitor information, extracts rival deep-level semantic knowledge through semantic- based text mining technology. Two competitive enterprises in camera market, namely Canon and Nikon arc chosen to demonstrate the applicability of the model, the results show that this model has potential practical value, which can effectively improve business decision-making level.
作者 唐晓波 郭萍
出处 《情报学报》 CSSCI 北大核心 2013年第1期28-36,共9页 Journal of the China Society for Scientific and Technical Information
基金 教育部人文社会科学重点研究基地重大项日“面向决策的企业信息资源集成研究”(批准号:2009JJD870002) 教育部人文社会科学研究项目“企业信息资源集成研究”(批准号:2008JA870013)的研究成果.
关键词 文本挖掘 领域本体 竞争对手分析 text mining, domain ontology, competitor analysis
  • 相关文献

参考文献19

二级参考文献109

共引文献334

同被引文献89

  • 1温有奎,焦玉英.构建语义Web环境下的知识服务科学框架[J].信息资源管理学报,2011,1(1):99-104. 被引量:1
  • 2吴晓伟,徐福缘,宋文官.社会关系态势图在竞争对手分析中的应用[J].情报学报,2007,26(1):100-105. 被引量:15
  • 3汪克夷,冯桂平.竞争对手分类和排序的灰关联聚类模型及其应用研究[J].情报学报,2007,26(5):752-757. 被引量:6
  • 4Abebe M, Angriawan A, Tran H. Chief executive external network ties and environmental scanning activities: An empirical examination. Strategic Management Review, 2011; 34(1): 30-39.
  • 5Alallak B. Evaluating the adoption and use of Internet-based market- ing Information systems to improve marketing intelligence. Interna- tional Journal of Marketing Studies, 2011; 32(2) : 87-96.
  • 6Ansoff I H. Managing strategic surprise by response to weak signals. California Management Review, 2009; 28 (2) : 21-25.
  • 7Buckinx W, Moons E, Van den Poel D, et al. Customer-adapted coupon targeting using feature selection. Expert Systems with Appli- cations, 2010; 26(4): 509-518.
  • 8Chen M C, Chiu A L, Chang H H. Mining changes in customer be-havior in retail marketing. Expert System with Applications, 2011; 28(4) : 773-781.
  • 9Chen M Y, Chu H C, Chen Y M. Developing a semantic-enable in- formation retrieval mechanism. Expert Systems with Applications, 2011; 37(1): 322-330.
  • 10Choi C, Kim S, Park Y. A patent-based cross impact analysis for quantitative estimation of technological impact : the case of informa- tion and communication technology. Technological Forecasting and Social Change, 2012; 74(9) : 1296-1304.

引证文献4

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部