期刊文献+

基于CSSD和SVM脑电分类技术的研究

The Study on the Classification of EEG Based on the CSSD and SVM
下载PDF
导出
摘要 本文研究的BCI实验是基于BCI2003竞赛数据来对脑电信号分类。本文提出了一种脑电信号趋势的概念,使用支持向量机(SVM)作为分类器的算法。首先将BCI2003竞赛数据通过中值滤波器和由小波函数构成的带通滤波器,然后用时间窗进行时域上地过滤,选取对于大脑思维活动现象表现最明显的一段数据,再通过共空域子空间分解(CSSD)从脑电信号中提取特征,最后基于提取的特征,通过SVM训练后,进行分类识别,分类识别率达到了85%~96%。实验中采用的特征提取方法和分类方法对于脑电信号的分类识别准确率提高了不少。 The BCI experiment studied in this paper used the BCI2003 competition data to classify the EEG. In this paper, we proposed a concept of EEG trend, and used support vector machine (SVM) as classification algorithms. Firstly, the multi-channel EEG data pass the low-pass filter and the band pass filter, respectively. Secondly, use the time window to filter them from time domain, select the section of the most significant phenomenon of performance data, and extract features through the common spatial subspace decomposition (CSSD) from the signals.Finally, based on the extracted features, we classify them through the SVM training. The recognition rate is 85% - 96%, and the accuracy for the EEG classification increased a lot.
出处 《中国西部科技》 2013年第2期7-8,共2页 Science and Technology of West China
关键词 共空域子空间分解 支持向量机 脑机接口 脑电信号趋势 Common spatial subspace decomposition Support vector machine Brain-computer interface EEG trend
  • 相关文献

参考文献7

  • 1Hoffmann U,Vesin J,Ebrahimi T. An efficient P300-based Brain-computer interface for disabled subjects[J].Neurosci Methods,2008,(01):115-125.
  • 2Cincotti F,Matria D,Aloise F. High-resolution EEG techniques for brain-computer interface applications[J].Neurosci Methods,2008,(01):3l-42.
  • 3Wolpaw J,Birbaumer N,Mcfarland D. Brain-computer interfaces for communication and contro1[J].{H}CLINICAL NEUROPHYSIOLOGY,2002,(06):767-79l.
  • 4赵慧;李远清.脑机接口技术研究概况[J]计算机技术与自动化,2006(04):115-118.
  • 5肖首柏,胡剑锋.脑机接口研究概述[J].科技广场,2007(9):229-232. 被引量:6
  • 6王新光,邹凌,段锁林,周仁来.脑机接口技术的研究与进展[J].中国组织工程研究与临床康复,2008,12(39):7722-7724. 被引量:8
  • 7Hochberg L,Serruya M,Friehs G. Neuronal ensemble control of prosthetic devices by a human with tetraplegia[J].{H}NATURE,2006,(7099):164-17l.

二级参考文献26

  • 1高楠,卓晴,王文渊.一种新型的人机交互方式——脑机接口[J].计算机工程,2005,31(18):1-3. 被引量:8
  • 2Schalk G, Brunner P, Gerhardt LA, et al. Brain-computer interfaces (BCIs): detection instead of classification. J Neurosci Methods. 2008 Jan 15;167(1):51-62.
  • 3Hoffmann U. Vesin JM, Ebrahimi T, et al. An efficient P300-based brain-computer interface for disabled subjects. J Neurosci Methods 2008;167(1):115-125.
  • 4Pfurtschener G, Leeb R, Keinrath C, et al. Walking from thought. Brain Res. 2006;1071(1):145-152.
  • 5Vaughan TM, McFarland DJ, Schalk G, et al. The Wadsworth BCI Research and Development Program: at home with BCI. IEEE Trans Neural Syst Rehabil Eng 2006;14(2):229-233.
  • 6Sixto Ortiz Jr. Brain-computer interface: where human and machine meet. Computer 2007; 1 (40): 17-21.
  • 7Cincotti E Mattia D, Aloise E et al. High-resolution EEG techniques for brain-computer interface applications. J Neurosci Methods 2008; 167( 1 ):31-42.
  • 8Wolpaw JR, Birbaumer N, Mcfarland DJ. Brain-computer interfaces for communication and control. Clin Neurophysiol 2002;113(6):767-791.
  • 9Gao X, Xue D, Cheng M,et al. A BCI-based environmental controller for the motion-disabled. IEEE Trans Neural Syst Rehabil Eng 2003; 11(2): 137-140.
  • 10赵慧 李远清.脑机接口技术研究概况.计算机技术与自动化,2006,25(4):115-118.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部