期刊文献+

TC4钛合金神经网络本构模型及在有限元模拟中应用 被引量:10

Constitutive model of Ti-6Al-4V alloy based on artificial neural network and its application on FEM simulation
下载PDF
导出
摘要 利用Zwick/Roell Z100材料试验机,对TC4钛合金进行等温恒应变速率下的单向拉伸试验。基于获得的试验数据,采用BP神经网络技术建立了该合金的高温本构关系模型,并对其预测性能进行分析。基于ABAQUS/Explcit平台进行材料子程序二次开发,将神经网络本构模型嵌入到有限元计算中,实现了TC4钛合金高温变形的数值模拟。结果表明,神经网络本构模型预测精度很高,可以准确地描述TC4钛合金在热态下的动态力学性能。神经网络本构模型应用于有限元模拟可行且有效。 Isothermal constant-strain-rate uniaxial tensile tests were conducted for Ti-6Al-4V alloy on Zwick/Roell Z100 dynamic materials testing system.According to the obtained experimental data,a high temperature constitutive model of the alloy was proposed with BP neural network.Based on ABAQUS/Explcit,the artificial neural network constitutive model was joined into finite element calculation through secondary development of user-defined material subroutine.It realized the numerical simulation of the deforming process for the material.The results indicated that the artificial neural network constitutive model had high prediction precision,and could accurately describe the dynamic mechanical property of Ti-6Al-4V alloy at elevated temperature.The FEM case proved that the application of the constitutive model established by artificial neural network to FEM simulation was effective.
出处 《塑性工程学报》 CAS CSCD 北大核心 2013年第1期89-94,共6页 Journal of Plasticity Engineering
基金 中国商用飞机有限责任公司"大型客机制造类关键技术攻关"资助项目
关键词 神经网络 本构关系 TC4钛合金 有限元 neural network constitutive model Ti-6Al-4V FEM
  • 相关文献

参考文献16

  • 1聂蕾,李付国,方勇.TC4合金的新型本构关系[J].航空材料学报,2001,21(3):13-18. 被引量:21
  • 2SUN Sheng-di,ZONG Ying-ying,SHAN De-bin. Hot deformation behavior and microstructure evolution of TC4 titanium alloy[J].Transactions of Nonferrous Metals Society of China,2010,(11):2181-2184.doi:10.1016/S1003-6326(09)60439-8.
  • 3周计明,齐乐华,陈国定.热成形中金属本构关系建模方法综述[J].机械科学与技术,2005,24(2):212-216. 被引量:46
  • 4袁清华,张文明,黄重国,任学平.TC4盒形钣金零件气压成形工艺的研究[J].稀有金属,2009,33(4):478-483. 被引量:7
  • 5Songwon Seo,Oakkey Min,Hyunmo Yang. Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique[J].International Journal of Impact Engineering,2005.735-754.
  • 6R Kapoor,D Pal,J K Chakravartty. Use of artificial neural networks to predict the deformation behavior of Zr 2.5Nb 0.5Cu[J].Journal of Materials Processing Technology,2005,(02):199-205.doi:10.1016/j.jmatprotec.2005.03.022.
  • 7何勇,张红钢,刘雪峰,谢建新.NiTi合金高温变形本构关系的神经网络模型[J].稀有金属材料与工程,2008,37(1):19-23. 被引量:19
  • 8张德丰.MATLAB神经网络仿真与应用[M]北京:电子工业出版社,2009.
  • 9飞思科技产品研发中心.神经网络理论与MATLAB7实现[M]北京:电子工业出版社,2006.
  • 10GhaboussI J,Garrett J J,WU X. Material modeling with neural networks[A].Swansea,UK,1990.701-717.

二级参考文献83

共引文献102

同被引文献93

引证文献10

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部