期刊文献+

非局部正则化的压缩感知图像重建算法 被引量:7

Compressed sensing image reconstruction algorithm based on non-local regularization
下载PDF
导出
摘要 压缩感知(compressed sensing,CS)图像重建算法是CS图像获取问题的一个研究重点。针对传统基于稀疏性先验的重建算法不能有效重建图像的各种结构特征,为了在测量值数量不变的情况下进一步提高图像的重建质量,在稀疏性先验的基础上,引入局部自回归模型和非局部自相似性作为图像额外的先验信息,建立了非局部正则化的CS图像重建模型,并给出了相应的数值求解算法。此外,对于重建模型中图像的自回归参数,给出一种基于非局部相似点的估计方法。实验结果表明,较之传统的稀疏性正则化重建算法和同类的MARX(model-based adaptive recovery of compressive sensing)算法,所提算法能获得更高的图像重建质量。 Compressed sensing (CS) image reconstruction algorithm is a key point in the CS image acquisi tion problem. The conventional sparsity based reconstruction algorithms cannot effectively reconstruct various image structures. In order to improve the reconstruction precision with the same number of measurements, the local autoregressive (AR) model and non-local self-similarity as the additional prior information of image are in- troduced, and a non-local regularized CS image reconstruction model and the relative numerical algorithm are de- veloped. Furthermore, a non-local similarity based estimation method for AR parameters is proposed, which are considered in the present reconstruction model. Compared with the traditional sparsity regularized algorithms and related MARX(model-based adaptive recovery of compressive sensing) algorithm, the proposed algorithm can achieve a higher image reconstruction performance.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第1期196-202,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61101194 61071146) 江苏省自然科学基金(BK2011701) 高等学校博士学科点专项科研基金(20123219120043)资助课题
关键词 压缩感知 图像重建 自回归模型 非局部自相似性 compressed sensing (CS) image self-similarity reconstruction autoregressive (AR) model non-local
  • 相关文献

参考文献15

  • 1Donoho D. Compressed sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582.
  • 2Candes E. Compressive sampling[A].2006.1433-1452.
  • 3Willett R,Marcia R,Nichols J. Compressed sensing for practical optical imaging systems:a tutorial[J].Optical Engineering,2011,(07):1-13.
  • 4Ma J W. Improved iterative curvelet thresholding for compressed sensing and measurement[J].IEEE Trans on Intrumentation and Measurement,2011,(01):126-136.
  • 5Yin W,Osher S,Goldfarb D. Bregman iterative algorithms for L1-minimization with applications to compressed sensing[J].Society for Industrial and Applied Mathematics (SIAM) Journal on Imaging Sciences,2008,(01):143-168.
  • 6Li C. An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing[D].Houston:Rice University,2009.
  • 7Candes E,Romberg J. LA magic:a collection of matlab routines for solving the convex optimization programs central to compressive sampling[EB/OL].http://www.l1-magic.org,2011.
  • 8Wu X L,Zhang X J,Wang J. Model-guided adaptive recovery of compressive sensing[A].2009.123-132.
  • 9Wright S,Nowak R,Figueiredo M. Sparse reconstruction by separable approximation[A].2008.3373-3376.
  • 10Daubechies I,Defrise M,Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J].Communications on Pure and Applied Mathematics,2004,(11):1413-1457.doi:10.1002/cpa.20042.

同被引文献83

  • 1冯志刚,信太克规,王祈.基于最小二乘支持向量机预测器的传感器故障检测与数据恢复(英文)[J].仪器仪表学报,2007,28(2):193-197. 被引量:23
  • 2方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 3维纳·K·英格尔,约翰·G·普罗克斯.数字信号处理(MATLAB版)[M].刘树棠,译.西安:西安交通大学出版社,2008,1:425-440.
  • 4Donoho D L. Compressed sensing[J]. IEEE Trans. on Infor- mation Theory, 2006, 52(4) : 1289 - 1306.
  • 5Donoho D L, Tsaig Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3) : 533 - 548.
  • 6Baraniuk R G. Compressive sensing[J]. IEEE Signal Proces sing Magazine, 2007, 24(4) : 118 - 121.
  • 7Laska J, Kirolos S, Massoud Y, et al. Random sampling for analog- to-information conversion of wideband signals [C]//Proc. of the IEEE Dallas Circuits and Systems Workshop, 2006:119 - 122.
  • 8Kirolos S, Laska J, Wakin M, et al. Analog todnformation con- version via random demodulation[C]// Proc. of the IEEE Dallas Circuits and Systems Workshop, 2006 : 71 - 74.
  • 9Taheri O, Vorobyov S A. Segmented compressed sampling for ana log-to-information conversion: method and performance analysis[J]. IEEE Trans. on Signal Processing, 2011, 59(2) : 554 - 572.
  • 10Tropp J A, Laska J N, Duarte M F, et al. Beyond nyquist: ef- ficient sampling of sparse bandlimited signals[J].IEEE Trans. on Information Theory, 2010, 56(1) : 520 - 544.

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部