期刊文献+

基于局部熵的全自动图像拼接算法 被引量:2

Anautomatic Image Mosaic Algorithm Based on Local Entropy
下载PDF
导出
摘要 针对传统图像拼接算法存在的缺点,提出一种基于局部熵的全自动图像拼接算法.首先使用Harris角点检测器提取二幅图像的特征点.利用熵精确定位的优点,采用局部最小熵差和匹配点约束关系相结合的双向特征匹配算法匹配特征点.为剔除误匹配点的干扰,利用快速RANSAC算法(PERANSAC)对匹配点求精,估算单应矩阵.最后用三角函数加权平均法进行图像融合,平滑处理,消除接缝,实验验证了本算法性能. By analyzing the disadvantages of the traditional image mosaic algorithms,an automatic image mosaic algorithm based on local entropy is proposed.At first it uses Harris corner detector to extract the feature points from two images.The algorithm is based on local entropy of precise positioning advantage,the least local entropy and corners' constraint relations are used to match interest points.PERANSANC algorithm is used to reject false matches and compute homography matrix.The Triangle Function is used to get smoothing seamless mosaic image.The result shows that the algorithm is robust and effective.
作者 尚明姝
出处 《微电子学与计算机》 CSCD 北大核心 2013年第1期65-68,共4页 Microelectronics & Computer
基金 黑龙江高等教育学会"十二五"教育科学研究规划课题(HGJXH B1110957 HGJXH B2110958) 哈尔滨学院学科发展研究基金项目(HXKQ200602)
关键词 图像配准 角点检测 局部熵差 图像融合 Image registration corner detector local entropy difference image blending
  • 相关文献

参考文献8

二级参考文献64

  • 1林诚凯,李惠,潘金贵.一种全景图生成的改进算法[J].计算机工程与应用,2004,40(35):69-71. 被引量:7
  • 2仵建宁,郭宝龙,冯宗哲.一种基于兴趣点特征匹配的图像镶嵌技术[J].光电子.激光,2006,17(6):733-737. 被引量:14
  • 3卢力,王勇涛,田金文,柳健.基于SUSAN算法的遥感图像去云[J].通信学报,2006,27(8):160-164. 被引量:5
  • 4李俊平,周振环.提取图像边界角点的新方法[J].微电子学与计算机,2006,23(11):188-190. 被引量:4
  • 5Zitova B, Flusser J. Image registration methods: a survey[J]. Image and Vision Computing, 2003,21 (11) : 977-1000
  • 6Liu Hanzhou, Guo Baolong, Feng Zongzhe. Pseudo- Log - Polar Fourier Transform for Image Registration[J]. IEEE Signal Processing Letters, 2006,13 (1) : 17-20
  • 7Smith S M,Brady J M. SUSAN-a new approach to low level image processing[J].International Journal of Computer Vision, 1997,23(1) :45-78
  • 8Harris C,Stephens M. A combined comer and edge detector[A] //Proceedings of the 4th Alvey Vision Conference[C]. Plessey, United Kingdom, 1988:147-151
  • 9Lowe D G. Distinctive image features from scale-invariant key- points[J]. International Journal of Computer Vision, 2004, 60 (2):91-110
  • 10Khotanzad A, Hong Y H. Invariant image recognition by Zemike moments[J]. IEEE Transactions on PAMI, 1990,12(5) :489- 497

共引文献259

同被引文献14

  • 1陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 2王琰,丁明明.基于熵的柱面全景图拼接算法及其鲁棒性分析[J].小型微型计算机系统,2007,28(1):148-150. 被引量:10
  • 3管涛,李利军,段利亚,王乘.基于平面重建与自然特征匹配的虚实注册方法[J].光电工程,2007,34(9):134-139. 被引量:1
  • 4LOWED G. Distinctive image features from scale-in- variant keypoints[J]. International Journal of Comput- er Vision, 2004, 60(2).. 91-110.
  • 5Ke Y, Sukthankar R. PCA-SIFT:A more distinctive representation for local image descriptors [ C] ff Pro- ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington IX;, USA: IEEE, 2004 : 506-513.
  • 6Bay H, Tuytelaars T, Gool I.. SRUF: speeded up ro- bust features[C] ,//Proceedings of the 9th European Conference Computer Vision. Austria: IEEE, 2006. 404-417.
  • 7Richard Hartley, Andrew Zisserman. Multiple View Geometry in Computer Vision [M]. Cambridge : Cambridge University Press , 2003 23-150.
  • 8BRANDT S. Maximum likehood robust regression with known and unknown residual models[C] // Proceedings of the ECCV Copenhager EL 1. 3:2002..97-102.
  • 9Harris C G,Stephens M. A combined corner and edge detector[A].Manchester,1988.147-151.
  • 10Lowe D G. Distinctive image features from scale-in-variant keypoints[J].International Journal of Comput-er Vision,2004,(02):91-110.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部