期刊文献+

基于Lattice-Boltzmann方法的SiO_2多孔绝热材料传热分析 被引量:1

Heat Transfer Analysis on the SiO_2 Porous Insulation Materials with the Lattice-Boltzmann Methods
下载PDF
导出
摘要 采用四参数随机生成法构造了SiO2多孔绝热材料微观结构,引入二维九速度不可压格子多相Lattice-Boltzmann热模型,该模型能够方便的计算具有复杂边界的多孔材料微尺度传热问题,给出了从结构构造模拟到具体的Lattice-Boltzmann传热分析的程序实现流程,进行了完整的二维多孔绝热材料导热过程的数值分析。结果表明Knudsen数小于10-1时,相同孔隙率下孔径越大,有效导热系数越低。随着孔隙率的减小,有效导热系数明显增加,增加气相导热比重是增强该绝热材料绝热性能的有效途径。骨架结构对SiO2多孔绝热材料有效导热系数的影响显著。 A multi- parameter random generation- growth methods, quartet structure set( QSGS), was in- troduced for replicating the microscopic stucture of the Si02 porous insulation materials. The inroduction of two - dimensional nine speed muhiphase incompressible Lattice -Boltzmann thermal model makes the the calculation of the micoscale heat transfer easy in porous materials with complex boundary. The pro- gram implementation process of bothe replicating the structure and the Lattice - Bohzmann heat transfer a- nalysis was developed. Then the complete numericl materials was carried out. The results indicate that a real conductivity when the Knudsen number was less analysis of two - dimensional heat transfer in porous larger pore size could lead to a smaller effective ther- than 10-1and in the same porosity. And as the poros- ity be smaller, the effective thermal conductivity increasd significantly. To increase the proportion of gas heat transfer is an effective way to enhance the insultion properties of the insulation materials. Differences in skeletion stuctuer were significantly for the effective thermal conductivity of the SiO2 porous insulation materials.
出处 《节能技术》 CAS 2013年第1期11-16,共6页 Energy Conservation Technology
基金 "十二五"国防科技预研基金资助项目(401030603-0261-004)
关键词 多孔绝热材料 Lattice—Boltzmann方法 传热分析 porous insulation materials Lattice - Boltzman methods heat tranfer analysis
  • 相关文献

参考文献12

  • 1张贺新,赫晓东,何飞.气凝胶隔热性能及复合气凝胶隔热材料研究进展[J].材料工程,2007,35(z1):94-97. 被引量:13
  • 2杨自春,陈德平.SiO_2纳米多孔绝热材料的制备与绝热性能研究[J].硅酸盐学报,2009,37(10):1740-1743. 被引量:12
  • 3刘静.微米纳米尺度传热学[M]北京:科学出版社,2001.
  • 4Z.M.Zhang. Nano/Microscale heat transfer[M].New York:The McGraw-Hill,2007.
  • 5C.L.Tien,A.Majamdar,F.M.Gemer. Microscale energy transport[M].Washington:Taylor&Francis,1998.
  • 6M.Madadi,M.Sahimi. Lattice Boltzmann simulation of flow in fracture networks with rough,self-affline surfaes[J].Physical Review E,.
  • 7H.F.Zhang,X.S.Ge,H.Ye. Randomly mixed model for predicting the effective thermal conductivity of moist porous media[J].Journal of Physics D:Applied Physics,2006,(39):220-226.
  • 8R.S.Maiera,D.M.Kroll,R.S.Bnard. Pore-scale simulation of dispersion[J].Physics of Fluids,2000,(12):2062-2079.
  • 9M.Wang,J.Wang,N.Pan,S.Y.Chen. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J].Physical Review E,2007,(311):562-570.
  • 10J.Wang,M.Wang,Z.Li. A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer[J].International Journal of Thermal Sciences,2007,(46):228-234.

二级参考文献26

共引文献23

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部