期刊文献+

求解最小闭包球问题改进的SMO-型算法 被引量:1

Modified SMO-type algorithm for solving minimum enclosing ball problem
下载PDF
导出
摘要 研究n维空间中m个点的最小闭包球(MEB)问题。通过结合确定并删除内部点的技术到序列最小最优化(SMO)方法中,提出一种近似求解MEB问题的改进的SMO-型算法。证明了该算法具有线性收敛性。数值结果表明对于一些mn的大规模数据集,改进的算法与原算法相比速度可以提高10倍以上。尤其,当n等于100且m等于100000时,改进的SMO-型算法仅需执行8s。此外,对于n等于10000且m等于1000的大规模数据集,改进的算法也仅需执行150s。 To study the Minimum Enclosing Bal(lMEB)problem of m points in n dimensions. By incorporating the technique of identification and elimination of interior points into Sequential Minimal Optimization(SMO)method, a modified SMO-type algorithm for the MEB problem is presented. This algorithm has the linear convergence. The numerical results show that the CPU time of the modified algorithm may improve by more than a speed-up factor of 10 on some large-scale date sets where m》n . In particular, when n equals 100 and m equals 100 000, the modified SMO-type algorithm only needs to run about 8 s. In addition, it also takes only about 150 s for the large-scale data sets in which n equals 10 000 and m equals 1 000.
出处 《计算机工程与应用》 CSCD 2013年第3期1-3,9,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.61072144) 陕西省教育厅专项科研基金(No.12JK0735)
关键词 最小闭包球 确定并删除内部点 序列最小最优化 线性收敛 大规模数据集 Minimum Enclosing Ball(MEB) identification and elimination of interior points sequential minimal optimization linear convergence large-scale data sets
  • 相关文献

参考文献8

  • 1丛伟杰,刘红卫.求解MEB问题的一种SMO-型方法[J].西北大学学报(自然科学版),2010,40(6):965-969. 被引量:9
  • 2Olivier Chapelle,Vladimir Vapnik,Olivier Bousquet,Sayan Mukherjee.Choosing Multiple Parameters for Support Vector Machines[J].Machine Learning (-).2002(1-3)
  • 3Hubbard P M.Approximating polyhedra with spheres for time critical collision detection[].ACM Transactions on Graphics.1996
  • 4Frank M,Wolfe P.An algorithm for quadratic programming[].Naval Research Logistics.1956
  • 5Tsang I,Kwok J,Cheung P.Core vector machines:FastSVM training on very large data sets[].J of MachineLearning Research.2005
  • 6Ahipasaoglu S D,Yildirim, E A.Identification and elimination of interior points for the minimum enclosing ball problem[].SIAM Journal on Optimization.2008
  • 7Ben-Hur A,Horn D,Siegelmann H T,et al.Support vector clustering[].Journal of Machine Learning Research.2001
  • 8Y ld r m E A.Two algorithms for the minimum enclosing ball problem[].SIAM Journal on Optimization.2008

二级参考文献9

  • 1PAN S H,LI X S.An efficient algorithm for the smallest enclosing ball problem in high dimensions[J].Applied Mathematics and Computation,2006,172 (1):49-61.
  • 2CHEN P H,FAN R E,LIN C J.A study on SMO-type decomposition methods for support vector machines[J].IEEE Transactions on Neural Networks,2006,17 (4):893-908.
  • 3TODD M J,YILDIRIM E A.On Khachiyan's algorithm for the computation of minimum volume enclosing ellipsoids[J].Discrete Applied Mathematics,2007,155 (13):1731-1744.
  • 4CHAPELLE O,VAPNIK V,BOUSQUET O,et al.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46 (1):131-159.
  • 5TSANG I W,KWOK J T,CHEUNG P M.Core Vector machines:Fast SVM training on very large date sets[J].Journal of Machine Learning Research,2005,6 (4):363-392.
  • 6BEN-HUR A,HORN D,SIEGLMANN H T,et al.Support vector clustering[J].Journal of Machine Learning Research,2001,2 (12):125-137.
  • 7KUMAR P,MITCHELL J S B,YILDIRIM E A.Approximate minimum enclosing balls in high dimensions using core-sets[J].The ACM Journal of Experimental Algorithmics,2003,8 (1):1-29.
  • 8YILDIRIM E A.Two algorithms for the minimum enclosing ball problem[J].SIAM Journal on Optimization,2008,19:1368-1391.
  • 9田苗,刘红卫,叶峰.求解半定规划问题的一种光滑化方法[J].西北大学学报(自然科学版),2009,39(1):33-38. 被引量:1

共引文献8

同被引文献10

  • 1来疆亮,王守觉.最小球覆盖几何算法及其在模式识别中的应用[J].模式识别与人工智能,2006,19(2):271-276. 被引量:8
  • 2Ben-Hur A, Horn D, Siegelmann H T, et al. Support vector clustering[J]. Journal of Machine Learning Re- search, 2001, 2(12): 125-137.
  • 3Tsang I W, Kwok J T, Cheung P-M. Core Vector machines: Fast SVM training on very large date sets [J]. Journal of Machine Learning Research, 2005, 6 (4) : 363-392.
  • 4Badoiu M, Clarkson K L. Optimal core-sets for balls [J]. Computational Geometry: Theory and Applica- tions, 2008, 40(1): 14-22.
  • 5Yildirim E A. Two algorithms for the minimum enclo- sing ball prohlem[J]. SIAM Journal on Optimization, 2008, 19(3): 1368-1391.
  • 6Ahipasaoglu S D, Yildirim E A. Identification and elimination of interior points for the minimum enclo- sing ball problem[J]. SIAM Journal on Optimization, 2008, 19(3): 1392-1396.
  • 7Kumar P, Mitchell J S B, Yildirim E A. Approximate min- imum enclosing balls in high dimensions using core-sets[J/ OL]. ACM Journal of Experimental Algorithmics, 2003, 8 : 1 - 29. http://citeseerx, ist. psu. edu/viewdoc/download? doi=10. 1.1.59. 9536&rep=rep1&type=pdf.
  • 8Chen P H, Fan R E, Lin C J. A study on SMO-type de- composition methods for support vector machines[J]. IEEE Transactions on Neural Networks, 2006, 17(4): 893-908.
  • 9Ouelat J, Marcotte P. Some comments on Wolfe's a- way steps[J]. Mathematical Programming, 1986, 35 (1) : 110-119.
  • 10丛伟杰,刘红卫.求解MEB问题的一种SMO-型方法[J].西北大学学报(自然科学版),2010,40(6):965-969. 被引量:9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部