期刊文献+

微博类社交网络中信息传播的测量与分析 被引量:68

Measurement and Analysis of Information Propagation in Online Social Networks Like Microblog
下载PDF
导出
摘要 为了更好地掌握在线社交网络中信息传播的特征规律和用户行为,以新浪微博为代表对社交网络中的信息传播进行了较大规模的测量、统计和分析,提出了一种三角和算法用于探测用户粉丝数阈值。该算法根据散点分布的统计规律来估计使微博热度达到某一值的粉丝数的临界值,发现为使微博热度大于10,用户粉丝数应大于150。其他测量分析结果表明:新浪微博具有很强的"名人效应",用户频繁地发帖并不能引起较大的关注,热门微博的热度几乎都以激增方式增长。这些结论对网络营销和网络监管具有参考价值。 A large scale measurement and analysis of information propagation in online social networks with Sina microblog as a representative is performed to better grasp the characteristics of information propagation and users' behaviors in online social networks.A trigonometric sum algorithm is proposed to detect a threshold to the number of fans.The algorithm bases on the statistic law of the scatter distribution to estimate the threshold for the number of fans,and to get a given mircoblog popularity.It is found that one should have at least 150 fans to make microblog popularity more than 10.Other analytical results show that: the Sina microblog possesses a strong "celebrity effect",and users' frequent posting fails to arouse much attention.Most hot messages gain their popularity through surge-increase.Conclusions obtained from analyzing will be good references for network marketing and network supervision.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第2期124-130,共7页 Journal of Xi'an Jiaotong University
基金 国家科技支撑计划资助项目(2011BAK08B05-02) 国家科技重大专项基金资助项目(2012ZX03005001) 国家自然科学基金资助项目(61170292 60970104) 国家"973计划"资助项目(2012CB315803)
关键词 在线社交网络 信息传播 微博热度 新浪微博 online social networks information propagation popularity of microblog Sina microblog
  • 相关文献

参考文献11

  • 1MISLOVE A,MARCON M,GUMMADI K P. Measurement and analysis of online social networks[A].New York,USA:ACM,2007.29-42.
  • 2SCHNEIDER F,FELDMANN A,KRISHNAMURTHY B. Understanding online social network usage from a network perspective[A].New York,USA:ACM,2009.35-48.
  • 3ADAR E,ADAMIC L A. Tracking information epidemics in blogspace[A].Washington,DC,USA:IEEE Computer Society,2005.207-214.
  • 4GOMEZ-RODRIGUEZ M,LESKOVEC J,KRAUSE A. Inferring networks of diffusion and influence[A].New York,USA:ACM,2010.1019-1028.
  • 5GRUHL D,GUHA R,LIBEN-NOWELL D. Information diffusion through blogspace[A].New York,USA:ACM,2004.491-501.
  • 6LIBEN-NOWELL D,KLEINBERG J. Tracing information flow on a global scale using Internet chainletter data[J].Proceedings of the National Academy of Sciences(USA),2008,(12):4633-4638.doi:10.1073/pnas.0708471105.
  • 7GOYAL A,BONCHI F,LAKSHMANAN L V. Learning influence probabilities in social networks[A].New York,USA:ACM,2010.241-250.
  • 8LERMAN K,GHOSH R. Information contagion:an empirical study of the spread of news on Digg and Twitter social networks[A].Washington,DC,USA:AAAI,2010.66-75.
  • 9BAKSHY E,HOFMAN J M,MASON W A. Everyone's an influencer:quantifying influence on twitter[A].New York,USA:ACM,2011.65-74.
  • 10新浪科技有限公司.2011年第四季度及全年财报[EB/OL]http:∥tech.sina.com.cn/i/2012-02-28/05296776965.shtml,2012.

同被引文献787

引证文献68

二级引证文献694

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部