摘要
巴黎期权是一种复杂的奇异期权.本文基于倒向随机微分方程,定义了巴黎期权的非线性价格过程,分析其性质,并且给出巴黎期权非线性定价的偏微分方程表达式.在金融市场收益率不确定的情形以及存贷利率不同的情形下分别对连续巴黎期权进行定价和具体的数值分析,结论显示巴黎期权的非线性定价机制更具合理性.
Parisian(Parasian) options are complex exotic options.In this paper,we define the nonlinear Parisian(Parasian) options,and construct the pricing formula of partial differential equations based on the backward stochastic differential equations.We present two examples of imperfect market,one is that the expected return is uncertain,the other takes into account a higher interest rate for borrowing than for lending.Results show that the pricing mechanism of nonlinear Parisian(Parasian) is more reasonable.
出处
《中国科学:数学》
CSCD
北大核心
2013年第1期91-103,共13页
Scientia Sinica:Mathematica
基金
教育部人文社会科学研究青年基金(批准号:11YJC790015)
国家社会科学基金一般项目(批准号:11BJL018)资助项目
关键词
倒向随机微分方程
巴黎期权
路径依赖
偏微分方程
backward stochastic differential equation, Parisian options, path dependent, partial differentialequation