期刊文献+

一种基于TV/L2模型的双极图像细节分解方法

A Method for Image Bipolar Detail Decomposition Based on the TV/L2 Model
原文传递
导出
摘要 基于TV/L2模型的总变差最小化方法在图像分解过程中受到正则化参数的影响。本文通过分析发现,当不同于经典模型而设置较小的正则化参数时,分解的图像特性发生了重要改变。据此,本文提出了一种新的基于TV/L2模型的双极性图像细节分解方法,该方法在正则化参数较小的情况下将观测图像分解为一个近似图像分量和两个具有正、负不同极性并反映不同信息的细节图像分量。将这种新的图像分解方法应用于印刷电路板CT图像的处理中。实验结果表明,通过综合利用本图像分解方法得到的图像细节信息,可以在有效抑制金属伪影的同时增强PCB图像中的有用信息。 The Total Variation (TV) minimization method based on TV/L2 model is affected by the regularized parameter in image decomposition, This paper suggests that when the value of the chosen regularized parameter is small and different from classic methods, the property of the decomposed image will have an important change. According to this, a new method for image bipolar detail decomposition based on the TV/L2 model is proposed in this paper. The new method can decompose an image into an approximate image and two detailed images with different properties, when the value of the regularized parameter is small. Applying the decomposition model to Printed Circuit Board (PCB) CT images, we found that by combining the information in the detailed images, an enhanced image with metallic artifacts being effectively reduced can be acquired.
出处 《CT理论与应用研究(中英文)》 2013年第1期75-83,共9页 Computerized Tomography Theory and Applications
基金 国家高技术研究发展计划"863计划"(2012AA011603) 国家自然科学基金项目(10971228)
关键词 TV L2模型 细节图像 双极性分解方法 PCB的CT图像 金属伪影校正 TV/L2 model detailed image bipolar decomposition method PCB CT images metal artifact reduction
  • 相关文献

参考文献15

  • 1王际朝.一种组合总变差和4阶偏微分方程的图像去噪模型[J].中国图象图形学报,2008,13(8):1443-1446. 被引量:13
  • 2Rudin L,Osher S,Fatemi E. Nonlinear total variation based noise removal algorithms[J].Physical Review D,1992,(1-4):259-268.
  • 3Vese L,Osher S. Modeling textures with total variation minimization and oscillating patterns in image processing[J].Journal of Scientific Computing,2003,(1-3):553-572.doi:10.1023/A:1025384832106.
  • 4Meyer Y. Oscillating patterns in image processing and nonlinear evolution equations[A].2001.22.
  • 5Chan T,Esedoglu S,Park F. Recent develpments in total variation image restoration[UCLA Computational and Applied Mathematics Reports,05-01][R].2005.
  • 6Chan T,Wong C. Total variation blind deconvolution[J].IEEE Transactions on Image Processing,1998,(03):370-375.doi:10.1109/83.661187.
  • 7Osher S,Burger M,Goldfarb D. An iterative regularization method for total variation based image restoration[UCLA Computational and Applied Mathematics Reports,04-13][R].2004.
  • 8Wang YL,Yang JF,YinWT. A new alternating minimization algorithm for total variation image reconstruction[J].SIAM Journal on Imaging Sciences,2008,(03):948-951.
  • 9Chambolle A,Lions PL. Image recovery via total variation minimization and related problems[J].Numerische Mathematik,1997.167-188.
  • 10Aubert G,Vese L. A variational method in image recovery[J].SIAM Journal on Numerical Analysis,1997,(05):1948-1979.doi:10.1137/S003614299529230X.

二级参考文献8

  • 1Rudin L, Osher S, Fatemi E. nonlinear total variation based noise removal algorithms[J]. Physiea D, 1992, 60(1-4) :259 -268.
  • 2Lysaker M, Lundervold A, Tal X C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[ J]. IEEE Transactions on Image Processlng,2003,12(12) :1579 - 1590.
  • 3Lysaker M, Osher S, Tai X C. Noise removal using smoothed normals and surface fitting [ J ]. IEEE Transactions on Image Processing, 2004,13(10) :1345 - 1357.
  • 4Chan T, Marquina A, Mulet P. High-order total variation-based image restoration [ J]. SIAM Journal on Scientific Computation, 2000,22(2) :503 -516.
  • 5Greer J B, Bertozzi A L. Traveling wave solutions of fourth order pdes for image processing [ J ]. SIAM Journal on Mathematical Analysis, 2004,36 ( 1 ) :38 - 68.
  • 6Chan T, Esedoglu S, Park F. A Fourth Order Dual Method for Staircase Reduction in Texture Extraction and Imabe Restoration Problems [ M ]. Los Angeles, US: University of California Los Angeles, 2005.
  • 7Chan T, Park F. Data Dependent Multiscale Total Variation Based Image Decomposition and Contrast Preserving Denoising [ M ]. Los Angeles, US: University of California Los Angeles, 2004.
  • 8Chambolle A. Lions P-L. Image recovery via total variation minimization and related problems [ J ]. Numerische Matematik, 1997, 76(2) :167-188.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部