期刊文献+

基于进化信度规则库的故障预测(英文) 被引量:1

Fault prognosis based on evolving belief-rule-base system
下载PDF
导出
摘要 在假设信度规则库(BRB)的输入为均匀分布的情况下,已有文献提出了一种序贯自适应的学习算法以实现BRB的参数在线辨识和结构的自适应调整.然而在实际问题中,信度规则库的输入一般是未知的、难以得到的,这在一定程度上限制了序贯自适应学习算法的实用性,因此就需要研究一种改进的BRB学习算法以实现参数和结构的同时辨识.本文在序贯自适应方法的基础上,通过定义BRB的完整性准则,提出了改进的BRB进化策略.与现有方法相比,该方法可以实现信度规则的自动增减,且无需输入样本的概率密度函数.此外,该方法继承了BRB的特点,仅需要部分的输入输出信息.基于改进的进化策略,提出了一种新的故障预测算法,最后通过陀螺仪故障预测实验验证了本文方法的有效性. Recently,a sequential adaptive learning algorithm has been developed for online constructing belief-rulebased(BRB) system.This algorithm is based on the assumption that the sample density function of the inputs to BRB system obeys the uniform distribution.However,in practice,the sample density function is not always available and is difficult to be determined;this really limits the applicability of the above method.As such,it is desired to develop an improved algorithm without requiring the sample density function.In this paper,on the basis of the sequential adaptive learning algorithm,we develop an improved evolving BRB learning algorithm based on the belief-incomplete criterion.Compared with the current algorithms,a belief rule can be automatically added into the BRB or pruned from the BRB without the need of the sample density function.In addition,our algorithm inherits the features of the BRB,in which only partial input and output information are required.Based on the improved algorithm,a fault prognosis method is presented.In order to verify the effectiveness of our algorithm,a practical case study for gyroscope fault prognosis is studied and examined to demonstrate how our algorithm can be implemented.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第12期1579-1586,共8页 Control Theory & Applications
基金 supported by the National Nature Science Foundation of China(No.61025014,61174030,61104223) the Shandong High School Science&Technology Fund Planning Project(J09LG26)
关键词 专家系统 信度规则库 证据推理 故障预测 expert system belief-rule-base evidential reasoning fault prognosis
  • 相关文献

参考文献25

  • 1PECHT M. Prognostics and Health Management of Electronics[M].New Jersey:John Wiley,2008.
  • 2WANG W,HUSSIN B. Plant residual time modeling based on observed variables in oil samples[J].Journal of the Operational Research Society,2009,(06):789-796.
  • 3SIX S,WANG W,HU C H. Remaining useful life estimation-A review on the statistical data driven approaches[J].European Journal of Operational Research,2011,(01):1-14.
  • 4CHEN S M,CHUNG N Y. Forecasting enrollments using high-order fuzzy time series and genetic algorithm[J].International Journal of Intelligent Systems,2006,(05):485-501.
  • 5SIX S,HU C H,YANG J B. A new prediction model based on belief-rule-base for system's behavior prediction[J].IEEE Transactions on Fuzzy Systems,2011,(04):636-651.
  • 6HU C H,SIX S,YANG J B. Systems reliability forecasting based on evidential reasoning algorithm with nonlinear optimization[J].Expert Systems with Applications,2009,(03):2550-2562.
  • 7STACH W,KURGAN L,PEDRYCZ W. Numerical and linguistic prediction of time series with the use of fuzzy cognitive maps[J].IEEE Transactions on Fuzzy Systems,2008,(01):61-72.
  • 8ZHOU M,LIU X B,YANG J B. Evidential reasoning-based nonlinear programming model for MCDA under fuzzy weights and utilities[J].International Journal ofIntelligent Systems,2010,(01):31-58.
  • 9YANG J B,LIU J,WANG J. Belief rule-base inference methodology using the evidential reasoning approach-RIMER[J].IEEE Transactions on Systems Man and Cybernetics-Part A:Systems and Humans,2006,(02):266-285.
  • 10YANG J B,LIU J,XU D L. Optimal learning method for training belief rule based systems[J].IEEE Transactions on Systems Man and Cybernetics-Part A:Systems and Humans,2007,(04):569-585.

二级参考文献13

  • 1MUKATI K, RASCH M, OGUNNAIKE B A. An alternative struc- ture for next generation regulatory controllers. Part II: Stability anal- ysis, tuning rules and experimental validation[J]. Journal of Process Control, 2009, 19(2): 272 - 287.
  • 2HIMMELBLAU D M. Accounts of experiences in the application of artificial neural networks in chemical engineering[J]. Industrial & Engineering Chemistry Research, 2008, 47(16): 5782 - 5796.
  • 3AHMED M S. Neural-net-based direct adaptive control for a class of nonlinear plants[J]. 1EEE Transactions on Automatic Control, 2000, 45(1): 119- 124.
  • 4LU C H, TSAI C C. Generalized predictive control using recurrent fuzzy neural networks for industrial processes[J]. Journal of Process Control, 2007, 17(1): 83- 92.
  • 5BISHOP C M. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006.
  • 6ZHANG R D, WANG S Q. Support vector machine based predictive functional control design for Output temperature of coking furnace[J]. Journal of Process Control, 2008, 18(5): 439 - 448.
  • 7LIU Y, WANG H Q, LIE Kernel learning adaptive one-step-ahead predictive control for nonlinear processes[J]. Asia-Pacific Journal of Chemical Engineering, 2008, 3(6): 673 - 679.
  • 8IPLIKCI S. Online trained support vector machines-based general- ized predictive control of non-linear systems[J]. International Jour- nal of Adaptive Control and Signal Processing, 2006, 20(10): 599 - 621.
  • 9WANG H, PI D Y, SUN Y X. Online SVM regression algorithm- based adaptive inverse control[J]. Neurocomputing, 2007, 70(4/6): 952 - 959.
  • 10LIU Y, WANG H Q, YU J, et al. Selective recursive kernel learning for online identification of nonlinear systems with NARX form[J]. Journal of Process Control, 2010, 20(2): 181 - 194.

共引文献1

同被引文献13

  • 1ASTROM K J. Introduction to Stochastic Control Theory [M]. New York: Cademic Press, 1970.
  • 2QIAN F C, GAO J J, LID. Complete statistical characterization of discrete-Time LQG and cumulant control [J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2110 - 2115.
  • 3LI D, QIAN F C, FU P L. Optimal nominal dual control for discrete- time LQG problem with unknown parameters [J]. Automatica, 2008, 44(1): 119 - 127.
  • 4LI D, QIAN F C, GAO J J. Performance-first control for discrete- Time LQG problems [J]. IEEE Transactions on Automatic Control, 2009, 54(9): 2225 - 2230.
  • 5FORBES M G, GUAY M, FORBES J F. Control design for first-order processes: Shaping the probability density of the process state [J]. Journal of Process Control, 2004, 14(4): 399 - 410.
  • 6KARNY M. Towards fully probabilistic control design [J]. Automat- ica, 1996, 32(12): 1719 - 1722.
  • 7PAOLA M D, RICCIARDI G, VASTA M. A method for the proba- bilistic analysis of nonlinear systems [J]. Probabilistic Engineering Mechanics, 1995, 10(1): 1 - 10.
  • 8GUO L, WANG H. Stochastic Distribution Control System Design: A Convex Optimization Approach [M]. London: Springer, 2010.
  • 9GUO L, WANG H. PID controller design for output PDFs of stochas- tic systems using linear matrix inequalities [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, Cybernetics, 2005, 35(1): 65 -71.
  • 10YI Y, GUO L, WANG H. Adaptive statistic tracking control based on two steps neural networks with time delays [J]. IEEE Transactions on Neural Networks, 2009, 20(3): 420 - 429.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部