期刊文献+

FINITE p-GROUPS WHICH CONTAIN A SELF-CENTRALIZING CYCLIC NORMAL SUBGROUP

FINITE p-GROUPS WHICH CONTAIN A SELF-CENTRALIZING CYCLIC NORMAL SUBGROUP
下载PDF
导出
摘要 For any prime p, all finite noncyclic p-groups which contain a self-centralizing cyclic normal subgroup are determined by using cohomological techniques. Some applications are given, including a character theoretic description for such groups. For any prime p, all finite noncyclic p-groups which contain a self-centralizing cyclic normal subgroup are determined by using cohomological techniques. Some applications are given, including a character theoretic description for such groups.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2013年第1期131-138,共8页 数学物理学报(B辑英文版)
基金 Supported by the NSF of China(11171194) by the NSF of Shanxi Province(2012011001-1)
关键词 finite p-group self-centralizing cyclic normal subgroup 2-nilpotent group cohomology group irreducible complex character finite p-group self-centralizing cyclic normal subgroup 2-nilpotent group cohomology group irreducible complex character
  • 相关文献

参考文献7

  • 1Gorenstein D. Finite Group[M].New York:Harper and Row Publishers,1980.
  • 2Aschbacher M. Finite Group Theory[M].Cambridge:Cambridge University Press,2000.
  • 3Newman M F,Xu Mingyao. Metacyclic groups of prime-power order (Research announcement)[J].Adv Math (Beijing),1988.106-107.
  • 4Xu Mingyao,Zhang Qinhai. A classification of metacyclic 2-groups[J].Algebra Colloquium,2006.25-34.
  • 5Robinson D J S. A Course in the Theory of Groups[M].New York,Heidelberg,Berlin:Springer-Verlag,1982.
  • 6Isaacs I M. Character Theory of Finite Groups[M].New York:Academic Press,Inc,1976.
  • 7Huppert B. Endliche Gruppen I[M].Berlin Heidelberg,New York:Springer-Verlag,1967.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部