期刊文献+

基于半监督学习的行人检测方法研究 被引量:1

Research on pedestrian detection based on semi-supervised learning
下载PDF
导出
摘要 本文提出了基于半监督学习的行人检测方法,用以解决大量的无标记样本问题。在集成分类器的训练过程中,选择BP神经网络分类器、SVM分类器和KNN分类器作为3个子分类器,利用协同训练机制对各个子分类器进行协同训练。针对半监督学习中误标记样本问题,引入富信息策略和辅助学习策略消除训练过程引入的噪声,同时充分利用无标记样例,进而提高分类器的分类精度。通过对测试集和实时视频进行的行人检测实验,证明了本文方法的可行性和有效性。 In order to implement effective detection and utilize large numbers of unlabeled samples,a pedestrian detection method based on Semi-Supervised learning was presented in this paper.Firstly,BP neural networks classifier,SVM classifier and KNN classifier were selected as the three sub-classifiers,and then,the Co-Training mechanism was adopted to train each classifier.Rich information strategy and assistant learning strategy were added in to remove the wrong-marked samples and improve the accuracy of the algorithm by making the most of unlabeled samples.Through the experiments on the test set and real time videos,the feasibility and effectiveness of the approach are verified well.
出处 《软件》 2012年第6期23-26,共4页 Software
基金 吉林省教育厅"十二五"科学技术研究项目(2011-8) 吉林省科技发展计划项目(20050703-1)
关键词 行人检测 半监督 协同训练 BP神经网络 支持向量机 pedestrian detection Semi-Supervised learning Co-Training BP neural networks SVM
  • 相关文献

参考文献15

  • 1张洪斌,黄山.面向实时交通视觉监控的综合动态背景更新方法[J].计算机应用,2007,27(9):2134-2136. 被引量:10
  • 2Tang Y P,He Z L,Chen Y Y. ATM Intelligent Surveillance based on Omni-directional Vision[A].Los Angeles,California,USA,2009.660-664.
  • 3贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 4杨涛,李静,潘泉,张艳宁.基于场景模型与统计学习的鲁棒行人检测算法[J].自动化学报,2010,36(4):499-508. 被引量:19
  • 5Yasuno M,Yasuda N,Aoki M. Pedestrian Detection and Tracking in Far Infrared Images.Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[M].Washington,DC:USA,2004.125-125.
  • 6Leibe B,Seemann E,Schiele B. Pedestrian Detection in Crowded Scenes[A].San Diego,California,USA,2005.878-885.
  • 7Zhao L,Thorpe C. Stereo and Neural Network-based Pedestrian Detection[J].IEEE Transactions on Intelligent Transportation Systems,2000,(03):148-154.
  • 8Grubb G,Zelinsky A,Nilsson L. 3D Vision Sensing for Improved Pedestrian Safety[A].2004.19-24.
  • 9Dalai N,Triggs B. Histograms of Oriented Gradients for Human Detection[A].San Diego,California,USA,2005.886-893.
  • 10Benezeth Y,Emile B,Laurent H. Vision-Based System for Human Detection and Tracking in Indoor Environment[J].International Journal of Social Robotics,2010,(01):41-52.

二级参考文献80

  • 1Mohan A, Papageorgiou C, Poggio T. Example-based object detection in images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(4): 349-361.
  • 2Ramoser H, Schlogl T, Beleznai C, Winter M, Bischof H. Shape-based detection of humans for video surveillance applications. In: Proceedings of the International Conference on Image Processing. 2003. 1013-1016.
  • 3Gavrila D M, Giebel J. Shape-based pedestrian detection and tracking. IEEE Intelligent Vehicle Symposium. 2002. 8-14.
  • 4Bertozzi M, Broggi A, Chapuis R. Shape-based pedestrian detection and localization. IEEE Intelligent Transportation Systems, 2003, 1:328-333.
  • 5Sabzmeydani P, Mori G. Detecting pedestrians by learning shapelet features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007.
  • 6Wu B, Nevatia R. Detection and segmentation of multiple, partially occluded objects by grouping, merging, assigning part detection responses. International Journal of Computer Vision, 2009, 82(2): 185-204.
  • 7Dalai N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 886-893.
  • 8Leibe B, Seemann E, Schiele B. Pedestrian detection in crowded scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 878-885.
  • 9Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 10Mikolajczyk K, Schmid C, Zisserman A. Human detection based on a probabilistic assembly of robust part detectors. In: Proceedings of the 8th European Conference on Computer Vision. Prague, Czech Republic: 2004. 69--81.

共引文献124

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部