期刊文献+

基于BP神经网络和遗传算法的面包酵母高密度发酵培养基优化 被引量:3

Optimization of baker's yeast high density fermentation medium by optimized BP neural network based on genetic algorithm
下载PDF
导出
摘要 为实现面包酵母的高密度发酵培养,构建一个BP神经网络模型,用于回归面包酵母高密度发酵培养基中显著影响因子与茵体密度之间的非线性关系,并在此基础上结合遗传算法进对此模型进行全局寻优,得到关键因子最佳浓度分别为:葡萄糖52.3g/L,酵母浸出粉10.4g/L,(NH;)2S041.9g/L。采用此优化配方进行摇瓶培养,所得茵体密度为3.95×10^8个/mL,比对照提高了61.2%。结果证实了人工神经网络的模拟和预测功能在微生物培养基优化方面有一定应用价值。 In order to fulfill the high density cultivation of baker's yeast, the back-propagation neural network was adopted to construct a nonlinear predictable model which suggested the relationship between the key factors of the culture medium and the biomass of baker's yeast. And then the global optimization on this model with the genetic algorithm was conducted. Finally the optimal dose of these significant factors was obtained: glucose 52.3 g/L, yeast extract powder 10.4 g/L, (NH4 )2S041.9 g/L. Using this optimal medium, the biomass of the baker's yeast cultivated in shake flasks was as high as 3.95 10S/mL, increased by 61.2% compared with that of the primitive culture medium. It demonstrated that the application of artificial neural network in the optimization of microbiological culture media was feasible and efficient.
出处 《工业微生物》 CAS CSCD 2013年第1期64-68,共5页 Industrial Microbiology
关键词 面包酵母 高密度培养 BP神经网络 遗传算法 发酵优化 baker's yeast high density cultivation BP neural network genetic algorithm fermentation optimization
  • 相关文献

参考文献14

二级参考文献39

共引文献217

同被引文献21

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部