摘要
本文研究一类二阶微分方程解的增长性,其中方程的系数是级为n的整函数.利用Nevanlinna值分布的基本理论和复振荡理论证明,得到当其系数满足一定条件时,这类方程的每个非零解有无穷级且超级为n,推广了Kwon[12]和陈宗煊[13,14]等人的结果.
This paper investigates the growth of solutions of some second-order differential equations, where the coefficients of the equations are entire functions of order n. By using fundamental theorems of Nevanlinna's value distribution theory and the complex oscillation theory, we obtain that, when the coefficients satisfy some conditions, each non-zero solution of the above equation has infinite order and hyper-order n, which improve the results of Kwon [12] and Chen Zongxuan [13, 14].
出处
《数学杂志》
CSCD
北大核心
2013年第1期127-137,共11页
Journal of Mathematics
基金
江西省教育厅科技项目基金资助(GJJ11640)
关键词
微分方程
整函数
增长级
超级
differential equation
entire function
order of growth
hyper-order