期刊文献+

基于变密度法的大型天线系统支撑结构优化设计 被引量:5

Optimal Design of Supporting Structure in Large Antenna System Based on SIMP Method
原文传递
导出
摘要 大型天线支撑结构的合理设计对满足系统刚强度、轴系精度具有十分重要的意义。基于变密度法的拓扑优化方法根据约束条件和目标函数确定结构内材料最优分布,是合理进行支撑结构内部加强筋设计的一种行之有效方法。推导了以位移为约束,结构质量为优化目标变密度拓扑优化模型;针对某大型天线系统的支撑结构原设计方案中质量较大、结构内加强筋设计不合理出现局部应力集中等问题,设计该结构的三维拓扑优化域,运用该模型以天线系统允许的最小变形为约束条件,以质量最轻为目标进行三维支撑结构的拓扑优化设计,结合载荷传递路径,提出大型天线系统支撑结构内部加强筋设计方案,并采用尺寸优化方法对支撑结构外表面的上支架、底座等位置的板筋厚度进行优化,确定了支撑结构的最终优化方案。经验证,该结构在原方案的基础上减重12.5%,且有效地改善了力传递特性,消除了应力集中现象。 Supporting Structure is a crucial part of large antenna system in fulfilling stiffness, strength and accura- cy requirements. Topology optimization method based on SIMP (Solid Isotropic Material with Penalization) is an effective approach to determine optimal material layout under given constraint and objective function; it also gives practical guidance in designing the layout of sheets inside supporting structure. Aiming at problems of overweight and stress con- centration in original design, a topology optimization problem is built whose design domain is the internal space of supporting structure, whose constraint is the maximum permissible displacement in Y direction and whose objective is to minimize the mass of supporting structure. Based on the result of computation and load pass of antenna system, a new design of sheet layout is given and based on the new design a size optimization approach is used in determine the specific dimensions of external shell and internal sheet of supporting structure. The result of numerical test shows that the news design reduces 12.5% mass compared with original design and also eliminates stress concentration.
出处 《机械设计与研究》 CSCD 北大核心 2013年第1期118-122,共5页 Machine Design And Research
基金 国家自然科学基金资助项目(50905108 51275292)
关键词 大型支撑结构 变密度法 拓扑优化 尺寸优化 力传递路径 topology optimization solid isotropic material with penalization supporting structure size optimization
  • 相关文献

参考文献12

  • 1杨殊.复杂机械结构拓扑优化若干问题研究[D]大连:大连理工大学,2007.
  • 2MP Bends(φ)e. Optimal shape design as a material distribution problem[J].Structural and Multidisciplinary Optinrization,1989,(02):193-202.
  • 3O Sigmund. Design of material structures using topology optimization[D].Denmark:Technical University of Denmark,1994.
  • 4YM Xie,GP Steven. A simple evolutionary procedure for structural optimization[J].Computers & Structures,1993,(05):885-896.
  • 5Querin O M,Steven G P,Xie Y M. Evolutionary structural optimization(ESO)using a bi-directional algorithm[J].Engineering Computations,1998.1034-1048.
  • 6JA Sethian,A Wiegmann. Structural Boundary Design via Level Set and Immersed Interface Methods[J].Journal of Computational Physics,2000,(02):489-528.
  • 7MY Wang,X Wang,D Guo. A level set method for structural topology optimization[J].Computer Methods in Applied Mechanics and Engineering,2003,(1-2):227-246.
  • 8扶原放,金达锋,乔蔚炜.多工况下微型电动车车身结构拓扑优化设计[J].机械设计,2010,27(2):77-80. 被引量:26
  • 9Zuo Z H,Xie Y M. Huang X.Reinventing the wheel[J].Journal of Mechanical Design,Transactions of the ASME,2011,(02):1-4.
  • 10杨姝,郭东明,米大海.三维柔性微动平台拓扑优化设计[J].农业机械学报,2008,39(3):131-133. 被引量:2

二级参考文献12

  • 1杨启志,郭宗和,马履中,尹小琴,王俊英.三平移全柔性微动机器人机构的位置运动分析[J].农业机械学报,2006,37(11):96-99. 被引量:8
  • 2陆丹,刘毅.功能梯度材料拓扑优化研究[J].科技导报,2007,25(7):38-40. 被引量:3
  • 3Rong J H, Xie Y M, Yang X Y. An improved method for evolutionary structural optimization against buckling [ J ]. Computer & Structures, 2001,79: 253- 263.
  • 4Bendsoe M P. Optimal shape design as a material distribution problem [J]. Structural Optim, 1989( 1 ) : 193 -202.
  • 5Bojczuk D, Mroz Z. Optimal topology and configuration design of trusses with stress and buckling constraints [ J ]. Structural Optimization, 1999, 17(1):25-35.
  • 6Petersson J, Sigmund O. Slope constrained topology optimization [J]. International Journal for Numerical Methods in Engineering, 1998, 41(8) : 1417 -1434.
  • 7Sigmund O. Materials with prescribed constitutive parameters: an inverse homogenization problem [ J ]. International Journal of Solids and Structures, 1994, 31 (17) : 2313 - 2329.
  • 8Saaty T L, Vargas L G. Prediction, projection and forecasting : applications of the analytic hierarchy process in economics, finance, politics, games and sports [ M]. Boston: Kluwer Academic, 1991.
  • 9Sigmund O. On the design of compliant mechanisms using topology optimization[J]. Mechanics of Structures and Machines, 1997, 25(4) :495-526.
  • 10Bendsoe M P, Sigmund O. Material interpolation schemes in topology optimization[J]. Archives of Applied Mechanics, 1999, 69(9- 10) : 635 -654.

共引文献26

同被引文献49

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部