期刊文献+

高斯基函数CMAC神经网络用于克服摩擦非线性的研究 被引量:2

Application of CMAC neural network with Gaussian basis functions to overcoming nonlinear friction
下载PDF
导出
摘要 研究了一种高斯基函数CMAC神经网络用于克服液压伺服系统中摩擦非线性的控制器设计问题。该控制器不需要对摩擦力进行建模 ,而是采用学习的方法克服摩擦非线性 ,因此具有通用性。仿真结果表明 ,该种控制器不仅是有效的 。 A learning controller based on the CMAC (Cerebellar Model Articulation Controller) neural network with Gaussian basis functions is proposed to attenuate the influence of friction in electrohydraulic position servo systems. The learning controller treats the friction by learning, which needs not a priori knowledge of the control objectives. This feature qualifies it to be easy to apply to any servomechanism, particularly when the friction is large and erratic and difficult to model. The performance of the proposed controller is evaluated through simulations in a typical electrohydraulic position servo system subjected to nonlinear friction. The results demonstrate that the proposed controller is not only effective, but also improves the positioning accuracy of the system.
出处 《机床与液压》 北大核心 2000年第3期24-25,共2页 Machine Tool & Hydraulics
关键词 摩擦 CMAC神经网络 高斯基函数 学习控制 非线性 Friction CMAC neural network Gaussian function Learning control
  • 相关文献

参考文献2

  • 1[1]C T Chiang,C S Lin.CMAC with General Basis Functions.Neural Networks,1996,9(7):1199~1211
  • 2[4]S Tafazoli,C W de Silva and P D Lawrence.

同被引文献9

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部