期刊文献+

基于主成分分析的BP神经网络对南京市水资源需求量预测 被引量:4

Forecast of water demand by using BP neutral network based on principle component analysis in Nanjing
下载PDF
导出
摘要 以南京市为例,利用1999-2010年的总用水量数据,采用主成分分析法对影响水资源需求量的9个因子进行主要影响因子分析,根据确定的主要影响因子构造BP神经网络的输入样本,从而进行不同水平的年总需水量预测。结果表明:人口、GDP、万元GDP用水量、人均水资源量、污水年排放量为影响研究区需水量的主要因子,将此作为主要因子构造BP神经网络的输入样本,确定网络输入节点数,建立南京市总需水量预测模型。模拟计算结果表明,基于主成分分析的BP神经网络模型,预测结果的平均误差小于0.2亿m3。 Taking the water demand data from 1999 to 2010 of Nanjing for example,this paper analyzes the main factors that influence the water resource quantity based on the principle component analysis method.According to these main factors,the input samples of BP neutral network are determined.Thereby,the BP neutral networks can be trained to predict.The results show that population,GDP,water consumption of ten thousand yuan GDP,water resources per capita and volume of sewage discharge per year are the primary indexes that affect water resource demand.The corresponding prediction modeling outcome shows that the simulated experiment is quite fit for the practical situation and the average error of prediction is less than 0.2×108 m3.
出处 《水资源与水工程学报》 2012年第6期6-9,共4页 Journal of Water Resources and Water Engineering
基金 国家自然科学基金项目(41171430 40771044)
关键词 需水预测 主成分分析法 BP神经网络 water demand prediction principle component analysis BP neutral networks
  • 相关文献

参考文献11

二级参考文献72

共引文献470

同被引文献40

  • 1徐刚,王磊,金洪伟,刘沛东.因子分析法与BP神经网络耦合模型对回采工作面瓦斯涌出量预测[J].西安科技大学学报,2019,39(6):965-971. 被引量:19
  • 2杨智懿,熊亚选,张乾林.工作面瓦斯涌出量的神经网络模型预测研究[J].煤炭工程,2004,36(10):73-75. 被引量:25
  • 3颜佳华,宁国良,盛明科.基于BP神经网络的电子政务绩效评价研究[J].中国管理科学,2005,13(6):125-130. 被引量:35
  • 4Vicente-Serrano, Sergio M,Beguería, Santiago,López-Moreno, Juan I.A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index[J]. Journal of Climate . 2010 (7)
  • 5Heim,Jr.,Richard R.A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society . 2002
  • 6Meixiu Yu,Qiongfang Li,Michael J. Hayes,Mark D. Svoboda,Richard R. Heim.Are droughts becoming more frequent or severe in China based on the Standardized Precipitation Evapotranspiration Index: 1951–2010?[J]. Int. J. Climatol. . 2014 (3)
  • 7Wu, Z.Y.,Lu, G.H.,Wen, L.,Lin, C.A.Reconstructing and analyzing China’s fifty-nine year (1951-2009) drought history using hydrological model simulation. Hydrology and Earth System Sciences . 2011
  • 8Vicente-Serrano, Sergio M.,López-Moreno, Juan I.,Beguería, Santiago,Lorenzo-Lacruz, Jorge,Azorin-Molina, Cesar,Morán-Tejeda, Enrique.Accurate Computation of a Streamflow Drought Index. Journal of Hydrologic Engineering . 2012
  • 9Wells, Nathan,Goddard, Steve,Hayes, Michael J.A self-calibrating Palmer Drought Severity Index. Journal of Climatology . 2004
  • 10侯威,杨萍,封国林.中国极端干旱事件的年代际变化及其成因[J].物理学报,2008,57(6):3932-3940. 被引量:23

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部