摘要
利用再生核理论并结合有限差分法给出了一种新的求解描写无粘理想流动的一维非定常可压Euler方程组的方法———再生核解法。由于再生核函数的导数同时又是小波函数 ,通过数值试验及对误差的分析 。
A new method is presented by means of the theory of reproducing kernel space and finite difference method,to calculate the one dimensional time dependent compressible system of Euler Equations that describes a kind of motion law about ideal fluid.The results show that the method has many advantages,such as higher precision,less work and other things than any other methods in that the derived function of reproducing kernel function also is wavelet function simultaneoulsy. Key words:Hydrodynamics Reproducing kernel space of AR model with the fractal dimension mathematically by use of regression analysis. Finally, we apply this result to estimate parameters of rough surfaces.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2000年第7期109-112,共4页
Journal of Mechanical Engineering
基金
国家自然科学基金资助项目! ( 199710 2 0 )