摘要
在前人工作的基础上,考虑了在人、牛体内血吸虫分布与空间、时间有关的血吸虫病的传播动力学模型.研究了正平衡解的个数与参数的关系以及解的渐近性质。证明了当感染能力参数超过了一定限制时,人、牛体内血吸虫趋于一个稳定的非零分布是可能的。
A model for the epidemiological propagation of schistosomiasis , namely an initial boundary value problem for a reaction - diffusion system , is studied . The existence of global solutions and local and global stability of zero solution are discussed . It is proved in particular that for some cases there are at least three nonnegative equilibrium solutions , among which one is locally stable . Biological explanations are given .
出处
《北京理工大学学报》
EI
CAS
CSCD
1991年第1期8-16,共9页
Transactions of Beijing Institute of Technology
基金
国家自然科学基金
关键词
血吸虫病
动力学模型
稳定性
mathematical models
schistosomiasis
stability
topological degrees / positive equilibrium solutions
upper and lower solutions