期刊文献+

基于粒子群优化算法的异构多处理器任务调度 被引量:6

Heterogeneous multiprocessor task scheduling based on PSO algorithm
下载PDF
导出
摘要 为提高异构多处理器任务调度的执行效率,充分发挥多处理器并行性能,提出一种基于粒子群优化的异构多处理器任务调度算法—PSOASA算法。PSOASA算法以求得任务最短完成时间为目标,首先通过建立新的编码方式和粒子更新公式实现粒子搜索空间到离散空间的映射,使连续的粒子群优化算法适用于离散的异构多处理器任务调度问题,同时通过引入模拟退火算法,克服粒子群算法的"早熟"收敛现象,避免求得的解陷入局部最优。实验结果表明,PSOASA算法的执行效率优于目前广泛采用的遗传算法,有效地降低任务的执行时间,减少了迭代次数,适用于异构多处理器环境大规模任务调度。 To improve efficiency implementation heterogeneous multiprocessor task scheduling, parallel performance multi pro cessors, a task scheduling method is proposed, which is based on particle swarm optimization algorithm named PSOASA. The aim of The scheduling algorithm is to achieve shortest activation time. First, particle search space is mapped to discrete space through the establishment of a new coding method and particle update formula, so the continuous particle swarm optimization al gorithm is applied to the discrete heterogeneous multiprocessor task scheduling problem, to overcome the particle swarm algo rithm " premature" convergence phenomenon, simulated annealing algorithm is integrated to avoid the obtained solution into a local optimum. The experimental results show that the efficiency of PSOASA is superior to the genetic algorithm and reduce the task execution time and the number of iterations. It is suitable for heterogeneous multiprocessor environment.
作者 李静梅 张博
出处 《计算机工程与设计》 CSCD 北大核心 2013年第2期627-631,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61003036 60873138) 黑龙江省教育厅科学技术研究基金项目(12513048) 黑龙江省自然科学基金项目(F201124)
关键词 异构多处理器 任务调度 PSO算法 模拟退火 遗传算法 heterogeneous multi-processor PSO scheduling algorithm simulated armealing genetic algorithm
  • 相关文献

参考文献5

二级参考文献64

共引文献47

同被引文献61

  • 1彭晓明,郭浩然,庞建民.多核处理器——技术、趋势和挑战[J].计算机科学,2012,39(S3):320-326. 被引量:20
  • 2唐丹,金海,张永坤.集群动态负载平衡系统的性能评价[J].计算机学报,2004,27(6):803-811. 被引量:28
  • 3兰舟,孙世新.基于动态关键任务的多处理器任务分配算法[J].计算机学报,2007,30(3):454-462. 被引量:14
  • 4De Silva I J, Rider IM J, Romero R, et al. Transmission net- work expansion planning with security constraints [J]- IEEE Proc Gener Transm Distrib, 2005, 152 (6): 828-836.
  • 5Shi Y, Eberhart R C Empirical study o particle swarm optimization [C] //Proceedings of the IEEE Congress on Evolutio-nary Computa- tion. Piscataway, NJ: IEEE Press, 1999: 1945-1950.
  • 6Tang K, Yao X, Suganthan P N, et al. Benchmark Functions for the CEC 2008 special session and competition on large scale global optimization [R]. Nature Inspired Computation and Ap- plications Laboratory, 2007.
  • 7Das S, Suganthan P N. Problem Definitions and evaluation cri- teria for CEC 2011 competition on testing evolutionary algo- rithms on real world optimization problems [R]. Nanyang Technological University, 2010.
  • 8Zhao S Z, Liang J J, Suganthan P N, et al. Dynamic multi- swarm particle swarm optimizer with local search for large scale global optimization [C] //Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2008 : 3845-3852.
  • 9Luigi Atzori,Antonio Iera,Giacomo Morabito.The Internet of Things: A survey[J].Computer Networks.2010(15)
  • 10Xiaoyong Tang,Kenli Li,Guiping Liao,Kui Fang,Fan Wu.A stochastic scheduling algorithm for precedence constrained tasks on Grid[J].Future Generation Computer Systems.2011(8)

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部