期刊文献+

支持向量机在换道行为识别中的应用研究 被引量:6

Research on support vector machine in lane-change behavior recognition
下载PDF
导出
摘要 针对换道预警系统中换道行为识别识别率较低的问题,提出了以实际道路试验所得到的换道样本数据为基础,采用支持向量机(SVM)对换道行为进行识别的方法。为进一步提高模型的识别率和缩短识别耗时,对样本数据进行卡尔曼滤波、归一化处理、主成分分析,利用遗传算法对核参数进行调优。对优化后SVM模型进行训练与测试,测试结果表明:在1.2秒时窗下,优化后模型的识别准确率达到了97%以上,能够满足车载换道预警系统对识别有效率和实时性的要求。 For the recognition rate of lane changing behavior in lane changing warning system is low, lane changing behavior identification method based on support vector machine (SVM) is proposed and the data from practical road test are as the founda tion of this method. To further enhance identification accuracy and shorten the time of identification consuming, the collected da ta are filtered by kalman filtering technology, data normalization, principal component analysis, and the SVM model is optimized with genetic algorithm. The optimized SVM model is trained and tested, and the result shows that the recognition accuracy of the optimized model got to 97% when the window is the length of 1. 2 second. It can meet requirements of vehiclemounted lane changing warning system for realtime and recognition effectiveness.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第2期643-648,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(51178053) 国家科技支撑计划基金项目(2009BAG13A05)
关键词 换道行为 支持向量机 卡尔曼滤波 主成分分析 遗传算法 lane-change support vector machine Kalman filter principal component analysis genetic algorithm
  • 相关文献

参考文献10

二级参考文献57

共引文献237

同被引文献34

  • 1康海英,栾军英,郑海起,曹进华,田广.基于小波包变换和伪魏格纳分布的轴承故障诊断[J].军械工程学院学报,2004,16(5):5-8. 被引量:3
  • 2杨黎刚,苏宏业,张英,褚健.基于SOM聚类的数据挖掘方法及其应用研究[J].计算机工程与科学,2007,29(8):133-136. 被引量:32
  • 3JIN Lisheng, HOU Haijin, JIANG Yuying. Driver intention recognition based on Continuous Hidden Markov Model[C]// Proceedings of 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), Piscataway, 2011. Piscataway: Institute of Electrical and Electronics Engineers, 2011.
  • 4DARIO D S, LIU A. The time course of a lane changing: Driver control and eye-movement behavior[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2002, 5(8): 123-132.
  • 5SALVUCCI D D, MANDALIA H M, KUGE N, et al. Lane change detection using a computational driver mode[J]. Human Factors, 2007, 49(3): 532-542.
  • 6FANG Ruiming(方瑞明). SVM theory and application analysis (支持向量机理论及其应用分析)[M]. Beijing: China Electric Power Press, 2007.
  • 7WANG Guosheng(王国胜). Research on theory and algorithm for support vector machine classifier (支持向量机的理论与算法研究)[D]. Beijing: Beijing University of Posts and Telecommunications, 2007.
  • 8GOODMAN M J, BENTS F D, TIJERINA L. An investigation of the safety implications of wireless communication in vehicles[M]. Washington: Department of Transportation National Highway Traffic Safety Administration.
  • 9ZHANG Defeng(张德峰), DING Weixiong(丁伟雄), LEI Xiaoping(雷晓平). MATLAB programming and Integrated application (MATLAB程序设计与综合应用)[M]. Beijing: Tsinghua University Press, 2012.
  • 10SONG Hualing(宋花玲). Evaluation study and application of ROC curve (ROC曲线的评价研究及应用)[D]. Shanghai: Second Military Medical University, 2006.

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部