期刊文献+

基于贝叶斯神经网络的风电短期功率预报研究 被引量:3

Study on Wind Power Short-time Power Prediction Based on Bayes Neural Network
下载PDF
导出
摘要 提高风电功率预报的准确率对电网的安全运行调度有着重要的意义。针对标准BP学习算法泛化能力不强的问题,设计了一种基于贝叶斯正则化算法修正权值的学习算法,用于风电的功率预测。仿真结果对比表明新的算法具有比标准BP算法和径向基神经网络具有更好的泛化能力,同时取得了良好的预测效果。 It is important to improve accuracy of wind electricity power prediction for safe operation and dispatch of power grid. Aiming at problem of poor generalization ability of standard BP learning algorithm, This paper designs a learning algo- rithm based on Bayes regularization algorithm correction weights which is used for wind electricity power prediction. The simulation result shows that the new algorithm is better of generalization ability than standard BP algorithm and radial basis function neural network and can get good prediction effect.
出处 《广东电力》 2013年第1期19-22,共4页 Guangdong Electric Power
基金 广东省绿色能源技术重点实验室资助项目(2008A060301002) 广东省电网公司科技项目(K-GD2012-450)
关键词 BP神经网络 贝叶斯神经网络 风电场功率预报 泛化能力 BP neural network Byes neural network wind power plant power prediction generalization
  • 相关文献

参考文献9

二级参考文献98

共引文献286

同被引文献52

  • 1陈幼松.神经网络模型[J].中国计算机用户,1989(3):23-25. 被引量:1
  • 2廖瑞金,廖玉祥,杨丽君,王有元.多神经网络与证据理论融合的变压器故障综合诊断方法研究[J].中国电机工程学报,2006,26(3):119-124. 被引量:99
  • 3何正友,符玲,麦瑞坤,钱清泉,张鹏.小波奇异熵及其在高压输电线路故障选相中的应用[J].中国电机工程学报,2007,27(1):31-36. 被引量:54
  • 4刘菁,解大.基于粗糙集理论和信息融合的变电站故障诊断方法[J].继电器,2007,35(6):5-9. 被引量:9
  • 5S Gato, N Jayasuriya, R Peter. Temperature and rainfall thresholds for base use urban water demand modeling[J].Journal of Hydrolo- gy,2007, (337) :364 - 376.
  • 6D P Vijayalaksmi,K S J Babu. Water supply system demand fore- casting using adaptive neuro -fuzzy inference system[J]. Proeedia Engineering,2015 - 4:950 - 956.
  • 7O Kofinas,et al. Urban water demand forecasting for the Is/and of Skiathos[ J]. Proeedia Engineering,2014,89:1023 - 1030.
  • 8R McNown, et al. Forecasting annual water demands dominated by seasonal variations : the case of water demands in Mecca [ J ]. Ap- plied Economics,2015,47 (6) :544 - 552.
  • 9Y Bai, et al. A multi - scale relevance vector regression approach for daily urban water demand forecasting [ J ]. Journal of Hydrolo- gy,2014,517:236 - 245.
  • 10N E Huang, Shen Zheng. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non - stationary time series analysis [ Jl. Proceedings of the Royal Society of London, A454, 1998 : 903 - 995.

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部