期刊文献+

基于代谢通量分析的SAM和GSH联产溶氧控制策略 被引量:2

The Dissolved Oxygen Control Strategy Based on Metabolic Flux Analysis for Fermentative Co-Production of S-Adenosylmethionine and Glutathione
下载PDF
导出
摘要 为了提高S-腺苷甲硫氨酸(SAM)和谷胱甘肽(GSH)的联产量,考察了溶氧条件对Candida utilis CCTCC M209298发酵联产SAM和GSH的影响。采用代谢通量分析方法对不同转速下SAM和GSH联产发酵过程中的物质和能量代谢进行分析,确定了较优的溶氧控制策略:前9 h的发酵恒定转速350 r min 1,9 h后控制溶氧不低于30%。在此策略下,C.utilis CCTCC M 209298分批发酵生产SAM和GSH的联产量为520.7 mg L 1。最后分别从发酵动力学、代谢通量分析以及呼吸商变化规律对该溶氧控制策略促进SAM和GSH联合高产的原因进行了定量解释。 In order to improve the co-production of SAM and GSH under batch cultivation,the effect of dissolved oxygen(DO) level on fermentative co-production of S-adenosylmethionine(SAM) and glutathione(GSH) in a 5 L stirred fermentor with Candida utilis CCTCC M 209298 was investigated.The metabolic fluxes of intermediates and energy during batch fermentative co-production of SAM and GSH under different agitation rates were calculated by using metabolic flux analysis method.Based on the flux distribution of main intermediates,an optimum DO control strategy of a constant agitation rate of 350 r.min.1 maintained during the first 9 h of fermentation followed with a DO level not less than 30% after 9 h was proposed as an efficient approach for high co-production of SAM and GSH.Under this DO control mode,the product of 520.7 mg.L.1 for batch co-production of SAM and GSH with C.utilis CCTCC M 209298 was achieved.Furthermore,the reason for the improvement of the co-production of SAM and GSH under the proposed strategy was quantitatively interpreted by the fermentative kinetics,metabolic flux analysis and respiratory quotient,respectively.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2013年第1期102-107,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(20906065)
关键词 S-腺苷甲硫氨酸 谷胱甘肽 联产发酵 代谢通量分析 溶氧控制 S-adenosylmethionine glutathione fermentative co-production metabolic flux analysis dissolved oxygen control
  • 相关文献

参考文献15

  • 1Fontecave M,Atta M,Mulliez E. S-adenosylmethionine:nothing goes to waste[J].{H}Trends in Biochemical Sciences,2004,(05):243-249.
  • 2Sies H. Glutathione and its role in cellular functions[J].{H}Free Radical Biology and Medicine,1999,(9-10):916-921.
  • 3Ayer A,Tan S,Grant C. The critical role of glutathione in maintenance of the mitochondrial genome[J].{H}Free Radical Biology and Medicine,2010,(12):1956-1968.
  • 4Shao N,Wang D,Wei G. Screening of Candida utilis and medium optimization for co-production of S-adenosylmethionine and glutathione[J].{H}Korean Journal of Chemical Engineering,2010,(06):1847-1853.
  • 5Li Y,Wei G,Chen J. Glutathione:a review on biotechnological production[J].{H}Applied Microbiology and Biotechnology,2004,(03):233-242.
  • 6Liu H,Lin J P,Cen P L. Co-production of S-adenosyl-L-methionine and glutathione from spent brewer's yeast cells[J].{H}Process Biochemistry,2004,(12):1993-1997.
  • 7Lin J P,Tian J,You J. An effective strategy for the co-production of S-adenosylmethionine and glutathione by fed-batch fermentation[J].{H}Biochemical Engineering Journal,2004,(01):19-25.
  • 8黄金,谢希贤,徐庆阳,温廷益,陈宁.溶氧强制振荡对L-苏氨酸发酵产率及其代谢流迁移的影响[J].高校化学工程学报,2010,24(1):93-98. 被引量:3
  • 9王玉磊,卫功元,邵娜,聂敏.基于能量代谢分析的S-腺苷蛋氨酸和谷胱甘肽联合高产方法[J].化工学报,2012,63(1):223-229. 被引量:5
  • 10卫功元,李寅,堵国成,陈坚.产朊假丝酵母分批发酵生产谷胱甘肽的代谢通量分析[J].化工学报,2006,57(6):1410-1417. 被引量:16

二级参考文献51

  • 1陈涛,王靖宇,周世奇,陈洵,班睿,赵学明.基因组改组及代谢通量分析在产核黄素Bacillus subtilis性能改进中的应用[J].化工学报,2004,55(11):1842-1848. 被引量:17
  • 2郑志永,姚善泾.应用溶氧反馈控制高密度培养重组大肠杆菌过程中乙酸的产生[J].高校化学工程学报,2006,20(2):233-238. 被引量:19
  • 3秦华明,尹华.微生物培养的振荡现象及其应用[J].现代化工,2006,26(8):68-70. 被引量:3
  • 4XUQing-yang(徐庆阳) FENGZhi-bin(冯志彬) SUNYu-hua(孙玉华)etal.The effect of dissolved oxygen on L-threonine fermentation(溶氧对L-苏氨酸发酵的影响).中国生物工程杂志,2007,34(2):120-122.
  • 5Man-Hyo Lee,Hong-Weon Lee,Jin-Ho Park et al.Improved L-threonine production of Escherichia coli mutant by optimization of culture conditions[J].Journal of Bioscience and Bioengineering,2006,101(2):127-130.
  • 6Heinrikson R L,Merdith S C.Amino acid analysis by reverse-phase high performance liquid chromatography:precolume derivatization with phenylisothiocynate[J].Anal Biochem,1984,136(1):65-74.
  • 7YAO Ru-hua(姚汝华).The Craft Principle of the Microorganism Engineering(微生物工程工艺原理)[M].Guangzhou(广州):South China University of Technology Press(华南理工大学出版社),2001.
  • 8Rhiel M,Murhammer D W.The effect of oscillating dissolved oxygen concentration on the metabolism of a spodoptera frugiperda IPLB-Sf21-AE clonal isolate[J].Biotechnology and Bioengineering,1995,47(6):640-650.
  • 9Neubauer P,Haeggstroem L,EnforsS-O.Influence of substrate oscillations on acetate formation and growth yield in Escherichia coli glucose limited fed-batch cultivations[J].Biotechnology and Bioengineering,1995,47(2):139-146.
  • 10Farmer W R,Liao J C.Reduction of aerobic acetate production by Escherichia coli[J].Applied and Environmental Microbiology,1997,63(8):3205-3210.

共引文献21

同被引文献23

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部