期刊文献+

基于STM32F103的智能压力变送器研究与设计 被引量:3

Besearch and design of intelligent pressure transmitter based on STM32F103
下载PDF
导出
摘要 针对目前市场上传感器输出信号的非线性和温度失调,提出了以嵌入式微处理器STM32F103为核心,采用先进的溅射薄膜传感器,利用分段最小二乘法来进行非线性补偿的智能压力变送器的设计方案。在此描述了智能压力变送器的整体系统架构,着重阐述了对传感器输出信号智能化补偿原理。测试结果表明,经算法补偿后的模拟输出信号具有良好的线性特性,最大线性误差为0.179%,线性度得到了较大的提高。 In view of non-linearity and temperature imbalance of the output signal from sensors in market, a design scheme of intelligent pressure transmitter is proposed, in whieh the embedded microprocessor STM32F103 is taken as its core, the ad- vanced sputtered thin sensor is adopted, and the segmentation least square method is used to execute nonlinear compensation. The overall system architecture of the intelligent pressure transmitter is described. The intelligent compensation principle of the sensor output signal is elaborated emphatically. The testing results show that the analog output signal compensated by the seg- mentation least square method has a perfect linear characteristic. Its maximum linear error is 0.179%.
出处 《现代电子技术》 2013年第4期141-143,146,共4页 Modern Electronics Technique
基金 航天44所某型号高温测量技术研究项目资助(GK092002 K)
关键词 智能压力变送器 非线性补偿 分段最小二乘法 嵌入式微处理器 intelligent pressure transmitter nonlinear compensation segmentation least square method embedded microprocessor
  • 相关文献

参考文献9

二级参考文献16

  • 1韩崇昭,朱洪艳.多传感信息融合与自动化[J].自动化学报,2002,28(S1):117-124. 被引量:21
  • 2吴宏岐,周妮娜,张小娟,高蕊.信息融合的故障诊断技术及应用[J].传感器与微系统,2006,25(9):76-78. 被引量:4
  • 3黄志彦,张柏书,于开山,刘世仁.D-S证据理论数据融合算法在某系统故障诊断中的应用[J].电光与控制,2007,14(2):146-149. 被引量:15
  • 4Low Cost Low Power Instrumentation Amplifier[ J ]. Analog Devices, Inc. ,2004 : :53 - 55.
  • 5Practical Analog Design Techniques [ J ]. Aualog Devices, Inc. , 1995:65 - 67.
  • 6NIU Gang,WIDODO A,SON J D,et al.Decision-level fusion based on wavelet decomposition for induction motor fault diagnosis using transient current signal[J].Expert Systems with Applications,2008,35(3):918-928.
  • 7BASIR O,YUAN Xiaohong.Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory[J].Information Fusion,2007,8(4):379-386.
  • 8FAN Xianfeng,ZUO M J.Fault diagnosis of machines based on D-S evidence theory.Part 1:D-S evidence theory and its improvement[J].Pattern Recognition Letters,2006,27(5):366-376.
  • 9SHAFER G.A mathematical theory of evidence[M].Princeton,USA:Princeton University Press,1976.
  • 10滕召胜 罗隆福 童调生.智能检测系统与数据融合[M].北京:机械工业出版社,1999.201-240.

共引文献58

同被引文献20

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部