期刊文献+

Semi-theoretical analyses of the concrete plate perforated by a rigid projectile 被引量:3

Semi-theoretical analyses of the concrete plate perforated by a rigid projectile
下载PDF
导出
摘要 Based on the three-stage perforation model, a semi-theoretical analysis is conducted for the ballistic per- formances of a rigid kinetic projectile impacting on concrete plates. By introducing the projectile resistance coefficients, dimensionless formulae are proposed for depth of penetra- tion (DOP), perforation limit thickness, ballistic limit veloc- ity, residual velocity and perforation ratio, with the projec- tile nosed geometries and projectile-target interfacial fric- tion taken into account. Based on the proposed formula for DOP and lots of penetration tests data of normal and high strength concrete targets, a new expression is obtained for target strength parameter. By comparisons between the re- sults of the proposed formulae and existing empirical formu- lae and large amount of projectile penetration or perforation tests data for monolithic and segmented concrete targets, the validations of the proposed formulae are verified. It is found that the projectile-target interfacial friction can be neglected in the predictions of characteristic ballistic parameters. The dimensionless DOP for low-to-mid speed impacts of non-flat nosed projectiles increases almost linearly with the impact factor by a coefficient of 2/(nS). The anti-perforation ability of the multilayered concrete plates is dependent on both the target plate thickness and the projectile impact velocity. The variation range of the perforation ratio is 1-3.5 for concrete targets. Based on the three-stage perforation model, a semi-theoretical analysis is conducted for the ballistic per- formances of a rigid kinetic projectile impacting on concrete plates. By introducing the projectile resistance coefficients, dimensionless formulae are proposed for depth of penetra- tion (DOP), perforation limit thickness, ballistic limit veloc- ity, residual velocity and perforation ratio, with the projec- tile nosed geometries and projectile-target interfacial fric- tion taken into account. Based on the proposed formula for DOP and lots of penetration tests data of normal and high strength concrete targets, a new expression is obtained for target strength parameter. By comparisons between the re- sults of the proposed formulae and existing empirical formu- lae and large amount of projectile penetration or perforation tests data for monolithic and segmented concrete targets, the validations of the proposed formulae are verified. It is found that the projectile-target interfacial friction can be neglected in the predictions of characteristic ballistic parameters. The dimensionless DOP for low-to-mid speed impacts of non-flat nosed projectiles increases almost linearly with the impact factor by a coefficient of 2/(nS). The anti-perforation ability of the multilayered concrete plates is dependent on both the target plate thickness and the projectile impact velocity. The variation range of the perforation ratio is 1-3.5 for concrete targets.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第6期1630-1643,共14页 力学学报(英文版)
基金 supported by the Funds for Creative Research Groups of China(51021001) the National Natural Science Foundations of China(51008304 and 51178461) China Postdoctoral Science Foundation Funded Project(2012M521714)
关键词 PROJECTILE Concrete Depth of penetration Perforation limit thickness Ballistic limit velocity Resid-ual velocity Projectile Concrete Depth of penetration Perforation limit thickness Ballistic limit velocity Resid-ual velocity
  • 相关文献

参考文献6

二级参考文献60

共引文献85

同被引文献26

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部