期刊文献+

一种人体气道树快速自动提取算法的设计 被引量:3

Algorithm Design for Fast Automatic Segmentation of Airway Tree
下载PDF
导出
摘要 为了从胸部CT图像中提取气道树,提出一种人体气道树的快速自动提取算法,其中包括三维区域生长、三维波传递和形态学优化3个步骤,通过多次迭代完成最终提取.区域生长的作用是提取气道树主体,三维波传递和形态学优化用于提取外围细支气管.在波传递中采用模糊逻辑判据,并利用形态学特征防止泄漏.将算法应用于28例数据,结果表明,利用该算法均能成功提取第5级或第6级支气管,且未泄漏;此外,该算法运行速度特别快,提取一个气管树耗时一般小于2 s. To extract the tracheobronchial tree from lung CT images,an automatic rapid algorithm was proposed,which consisted of three steps including 3D region growing,3D wave propagation and morphological optimization.The final segmentation results were obtained through iterations of the three steps.The basic airway tree was segmented during region growing,and then the bronchial trees were obtained through 3D wave propagation and morphological optimization.A fuzzy logic criterion was adopted to end the wave propagation and the morphological features were used to prevent leakage.The proposed algorithm was applied to 28 cases and it was shown that the airway tree with the 5th or 6th bronchia could be extracted successfully while no leakage occurred.Besides,the proposed algorithm worked very fast,taking less than 2 seconds to extract one airway tree.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期186-190,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51006021) 中央高校基本科研业务费专项资金资助项目(N110419001)
关键词 CT影像 气管 支气管树 分割 三维波传递 区域生长 形态学优化 CT image airway bronchial tree segmentation 3D wave propagation region growing morphological optimization
  • 相关文献

参考文献1

二级参考文献8

  • 1Mori K, Hasegawa J, Toriwaki J, el al. Automated extraction of bronchus area from three dimensional X-ray CT images. IEICE Tech Rep, 1994.
  • 2Singh H ,Crawford M ,Curtin J,et al. Automated 3D segmentation of the lung airway tree using gain-based region growing approach. International conference on Medical Image Computing and Computer-Assisted Intervention. Lecture Notes in Computer Science ,2004,3217 : 975 - 982.
  • 3Rizi FY,Bidgoli JB, Ahmadian A, el al. An efficient fuzzy connectivity method for airway tree segmentation using fuzzy C-mean algorithm. Proceeding of 4th Kuala Lumpur International Conference on Biomedical Engineering. Kuala Lumpur: 2008: 501 - 505.
  • 4Bulow T,Lorenz C, Renisch S A general framework for tree segmentation and reconstruction from medical volume data. MICCAI, LN CS 3216,2004:533 - 540.
  • 5Zhou X, Hayashi T, Hara T, el al. Automatic segmentation and recognition of anatomical lung structures from high-resolution chest CT images. Computerized Medical Imaging and Graphics, 2006:299 -313X.
  • 6Mori K, Hasegawa J, Suenaga Y, el al. Automated anatomical labeling of the bronchial branch and its application to the virtual bronchoscopy system. IEEE trans Med Imag, 2000,19 (2) : 103 -114.
  • 7Sekiguchi H, Sugimoto N Shigeru E, el al. A. Blood vessel segmetion for head MRA using branch-based region-growing. IEICE Trans Info Sys DII,2004,J87(I ) : 126 - 133.
  • 8Schlath~lter T, Lorenz C, Carlsen S, el al. Simultaneous segmentation and tree reconstruction of the airways for virtual bronchoscopy. SPIE Medical Imaging,2002, V4684 : 103 - 113.

共引文献3

同被引文献106

  • 1陈磊,王胜军,郑全录,康雁.基于CT图像的三维拓扑细化算法及其在心脏CAD中的应用[J].计算机应用,2007,27(B06):406-410. 被引量:6
  • 2Naidich DP,Webb WR,Grenier PA,et al.Image of the Airways Functional and Radiologic Correlations[M].Philadelphia:Lippincott Williams & Wilkins,2005:12-13.
  • 3Hsia CW,Hyde DM,Ochs M,et al.An official research policy statement of the American Thoracic Society/European Respiratory Society:standards for quantitative assessment of lung structure[J].American Journal of Respiratory and Critical Care Medicine,2010,181(4):394-418.
  • 4Ravenel JG,Leue WM,Nietert P J,et al.Pulmonary nodule volume,effects of reconstruction parameters on automated measurements-a phantom study[J].Radiology,2008,247(2):400-408.
  • 5Goo JM,Tongdee T,Tongdee R,et al.Volumetric measurement of synthetic lung nodules with multi-detector row CT:effect of various image reconstruction parameters and segmentation thresholds on measurement accuracy[J].Radiology,2005,235 (3):850-856.
  • 6Kim JS,Kim JH,Cho G,et al.Automated detection of pulmonary nodules on CT images:effect of section thickness and reconstruction interval-initial results[J].Radiology,2005,236 (1):295-299.
  • 7Paul J,Krauss B,Banckwitz R,et al.Relationships of clinical protocols and reconstruction kernels with image quality and radiation dose in a 128-slice CT scanner:study with an anthropomorphic and water phantom[J].European Journal of Radiology,2012,81(5):699-703.
  • 8Boedeker KL,McNitt-Gray MF,Rogers SR,et al.Emphysema:effect of reconstruction algorithm on CT imaging measures[J].Radiology,2004,232(1):295-301.
  • 9Ley-Zaporozhan J,Ley S,Weinheimer O,et al.Quantitative analysis of emphysema in 3D using MDCT:influence of different reconstruction algorithms[J].European Journal of Radiology,2008,65(2):228-234.
  • 10Yuan R,Mayo JR,Hogg JC,et al.The effects of radiation dose and CT manufacturer on measurements of lung densitometry[J].Chest,2007,132(2):617-623.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部